Home Chassis Show diagrams of chargers for car batteries. Do-it-yourself automatic charger for a car battery. DIY car battery charger. Video

Show diagrams of chargers for car batteries. Do-it-yourself automatic charger for a car battery. DIY car battery charger. Video

Every motorist sooner or later has problems with the battery. I did not escape this fate either. After 10 minutes of unsuccessful attempts to start my car, I decided that I needed to purchase or make my own charger. In the evening, after checking out the garage and finding a suitable transformer there, I decided to do the charging myself.

There, among the unnecessary junk, I also found a voltage stabilizer from an old TV, which, in my opinion, would work wonderfully as a housing.

Having scoured the vast expanses of the Internet and really assessed my strengths, I probably chose the simplest scheme.

After printing out the diagram, I went to a neighbor who is interested in radio electronics. Within 15 minutes, he collected the necessary parts for me, cut off a piece of foil PCB and gave me a marker for drawing circuit boards. Having spent about an hour, I drew an acceptable board (the dimensions of the case allow for spacious installation). I won’t tell you how to etch the board, there is a lot of information about this. I took my creation to my neighbor, and he etched it for me. In principle, you could buy a circuit board and do everything on it, but as they say to a gift horse...
Having drilled all the necessary holes and displayed the pinout of the transistors on the monitor screen, I took up the soldering iron and after about an hour I had a finished board.

A diode bridge can be purchased on the market, the main thing is that it is designed for a current of at least 10 amperes. I found D 242 diodes, their characteristics are quite suitable, and I soldered a diode bridge on a piece of PCB.

The thyristor must be installed on a radiator, since it gets noticeably hot during operation.

Separately, I must say about the ammeter. I had to buy it in a store, where the sales consultant also picked up the shunt. I decided to modify the circuit a little and add a switch so that I could measure the voltage on the battery. Here, too, a shunt was needed, but when measuring voltage, it is connected not in parallel, but in series. The calculation formula can be found on the Internet; I would add that the dissipation power of the shunt resistors is of great importance. According to my calculations, it should have been 2.25 watts, but my 4-watt shunt was heating up. The reason is unknown to me, I don’t have enough experience in such matters, but having decided that I mainly needed the readings of an ammeter, and not a voltmeter, I decided on it. Moreover, in voltmeter mode the shunt noticeably warmed up within 30-40 seconds. So, having collected everything I needed and checked everything on the stool, I took up the body. Having completely disassembled the stabilizer, I took out all its contents.

Having marked the front wall, I drilled holes for the variable resistor and switch, then using a small diameter drill around the circumference I drilled holes for the ammeter. Sharp edges were finished with a file.

After racking my brains a bit over the location of the transformer and radiator with thyristor, I settled on this option.

I bought a couple more crocodile clips and everything is ready to charge. The peculiarity of this circuit is that it only works under load, so after assembling the device and not finding voltage at the terminals with a voltmeter, do not rush to scold me. Just hang at least a car light bulb on the terminals, and you will be happy.

Take a transformer with a voltage on the secondary winding of 20-24 volts. Zener diode D 814. All other elements are indicated in the diagram.

How to make a homemade automatic charger The photo shows a homemade automatic charger for charging
How to make a homemade automatic charger for a car battery

How to make a homemade automatic charger

for car battery



The photo shows a homemade automatic charger for charging 12 V car batteries with a current of up to 8 A, assembled in a housing from a B3-38 millivoltmeter.

Why do you need to charge your car battery?

The battery in the car is charged by an electric generator. To ensure a safe battery charging mode, a relay regulator is installed after the generator, providing a charging voltage of no more than 14.1 ± 0.2 V. To fully charge the battery, a voltage of 14.5 V is required. For this reason, the car generator cannot charge the battery 100%. Maybe. Therefore, it is necessary to periodically charge the battery with an external charger.


During warm periods, a battery charged only 20% can start the engine. At subzero temperatures, the battery capacity is halved, and starting currents increase due to thickened engine lubricant. Therefore, if you do not charge the battery in a timely manner, then with the onset of cold weather the engine may not start.

Analysis of charger circuits

Chargers are used to charge a car battery. You can buy it ready-made, but if you wish and have a little amateur radio experience, you can do it yourself, saving a lot of money.


There are many car battery charger circuits published on the Internet, but they all have drawbacks.


Chargers made with transistors generate a lot of heat and, as a rule, are afraid of short circuits and incorrect connection of the battery polarity. Circuits based on thyristors and triacs do not provide the required stability of the charging current and emit acoustic noise, do not allow battery connection errors and emit powerful radio interference, which can be reduced by placing a ferrite ring on the power cable.


The scheme for making a charger from a computer power supply looks attractive. The structural diagrams of computer power supplies are the same, but the electrical ones are different, and modification requires high radio engineering qualifications.


I was interested in the capacitor circuit of the charger, the efficiency is high, it does not generate heat, it provides a stable charging current regardless of the state of charge of the battery and fluctuations in the supply network, and is not afraid of output short circuits. But it also has a drawback. If during charging the contact with the battery is lost, the voltage on the capacitors increases several times (the capacitors and transformer form a resonant oscillatory circuit with the frequency of the mains), and they break through. It was necessary to eliminate only this one drawback, which I managed to do.


The result is a battery charger circuit that does not have the above listed disadvantages. For more than 15 years I have been charging any 12 V acid batteries with a homemade capacitor charger. The device works flawlessly.

Schematic diagram of an automatic charger

for car battery


Despite its apparent complexity, the circuit of a homemade charger is simple and consists of only a few complete functional units.



If the circuit to repeat seems complicated to you, then you can assemble a simpler one that works on the same principle, but without the automatic shutdown function when the battery is fully charged.

Current limiter circuit on ballast capacitors

In a capacitor car charger, regulation of the magnitude and stabilization of the battery charge current is ensured by connecting ballast capacitors C4-C9 in series with the primary winding of the power transformer T1. The larger the capacitor capacity, the greater the battery charging current.



In practice, this is a complete version of the charger; you can connect a battery after the diode bridge and charge it, but the reliability of such a circuit is low. If contact with the battery terminals is broken, the capacitors may fail.


The capacitance of the capacitors, which depends on the magnitude of the current and voltage on the secondary winding of the transformer, can be approximately determined by the formula, but it is easier to navigate using the data in the table.


To regulate the current in order to reduce the number of capacitors, they can be connected in parallel in groups. My switching is carried out using a two-bar switch, but you can install several toggle switches.

Protection circuit

from incorrect connection of battery poles

Circuit for measuring current and voltage of battery charging

Thanks to the presence of switch S3 in the diagram above, when charging the battery, it is possible to control not only the amount of charging current, but also the voltage. In the upper position of S3, the current is measured, in the lower position the voltage is measured. If the charger is not connected to the mains, the voltmeter will show the battery voltage, and when the battery is charging, the charging voltage. An M24 microammeter with an electromagnetic system is used as a head. R17 bypasses the head in current measurement mode, and R18 serves as a divider when measuring voltage.

Automatic charger shutdown circuit

when the battery is fully charged


To power the operational amplifier and create a reference voltage, a DA1 type 142EN8G 9V stabilizer chip is used. This microcircuit was not chosen by chance. When the temperature of the microcircuit body changes by 10º, the output voltage changes by no more than hundredths of a volt.


The system for automatically turning off charging when the voltage reaches 15.6 V is made on half of the A1.1 chip. Pin 4 of the microcircuit is connected to a voltage divider R7, R8 from which a reference voltage of 4.5 V is supplied to it. Pin 4 of the microcircuit is connected to another divider using resistors R4-R6, resistor R5 is a tuning resistor to set the operating threshold of the machine. The value of resistor R9 sets the threshold for switching on the charger to 12.54 V. Thanks to the use of diode VD7 and resistor R9, the necessary hysteresis is provided between the switch-on and switch-off voltages of the battery charge.



The scheme works as follows. When connecting a car battery to a charger, the voltage at the terminals of which is less than 16.5 V, a voltage sufficient to open transistor VT1 is established at pin 2 of microcircuit A1.1, the transistor opens and relay P1 is activated, connecting contacts K1.1 to the mains through a block of capacitors the primary winding of the transformer and battery charging begins. As soon as the charge voltage reaches 16.5 V, the voltage at output A1.1 will decrease to a value insufficient to maintain transistor VT1 in the open state. The relay will turn off and contacts K1.1 will connect the transformer through the standby capacitor C4, at which the charge current will be equal to 0.5 A. The charger circuit will be in this state until the voltage on the battery decreases to 12.54 V. As soon as the voltage will be set equal to 12.54 V, the relay will turn on again and charging will proceed at the specified current. It is possible, if necessary, to disable the automatic control system using switch S2.


Thus, the system of automatic monitoring of battery charging will eliminate the possibility of overcharging the battery. The battery can be left connected to the included charger for at least a whole year. This mode is relevant for motorists who drive only in the summer. After the end of the racing season, you can connect the battery to the charger and turn it off only in the spring. Even if there is a power outage, when it returns, the charger will continue to charge the battery as normal.


The principle of operation of the circuit for automatically turning off the charger in case of excess voltage due to the lack of load collected on the second half of the operational amplifier A1.2 is the same. Only the threshold for completely disconnecting the charger from the supply network is set to 19 V. If the charging voltage is less than 19 V, the voltage at output 8 of the A1.2 chip is sufficient to hold the transistor VT2 in the open state, in which voltage is applied to the relay P2. As soon as the charging voltage exceeds 19 V, the transistor will close, the relay will release contacts K2.1 and the voltage supply to the charger will completely stop. As soon as the battery is connected, it will power the automation circuit, and the charger will immediately return to working condition.

Automatic charger design

All parts of the charger are placed in the housing of the V3-38 milliammeter, from which all its contents have been removed, except for the pointer device. The installation of elements, except for the automation circuit, is carried out using a hinged method.



The housing design of the milliammeter consists of two rectangular frames connected by four corners. There are holes made in the corners with equal spacing, to which it is convenient to attach parts.



The TN61-220 power transformer is secured with four M4 screws on an aluminum plate 2 mm thick, the plate, in turn, is attached with M3 screws to the lower corners of the case. The TN61-220 power transformer is secured with four M4 screws on an aluminum plate 2 mm thick, the plate, in turn, is attached with M3 screws to the lower corners of the case. C1 is also installed on this plate. The photo shows a view of the charger from below.



A 2 mm thick fiberglass plate is also attached to the upper corners of the case, and capacitors C4-C9 and relays P1 and P2 are screwed to it. A printed circuit board is also screwed to these corners, on which an automatic battery charging control circuit is soldered. In reality, the number of capacitors is not six, as in the diagram, but 14, since in order to obtain a capacitor of the required value it was necessary to connect them in parallel. The capacitors and relays are connected to the rest of the charger circuit via a connector (blue in the photo above), which made it easier to access other elements during installation.



A finned aluminum radiator is installed on the outer side of the rear wall to cool the power diodes VD2-VD5. There is also a 1 A Pr1 fuse and a plug (taken from the computer power supply) for supplying power.



The charger's power diodes are secured using two clamping bars to the radiator inside the case. For this purpose, a rectangular hole is made in the rear wall of the case. This technical solution allowed us to minimize the amount of heat generated inside the case and save space. The diode leads and supply wires are soldered onto a loose strip made of foil fiberglass.



The photo shows a view of a homemade charger on the right side. The installation of the electrical circuit is made with colored wires, alternating voltage - brown, positive - red, negative - blue wires. The cross-section of the wires coming from the secondary winding of the transformer to the terminals for connecting the battery must be at least 1 mm 2.



The ammeter shunt is a piece of high-resistance constantan wire about a centimeter long, the ends of which are sealed in copper strips. The length of the shunt wire is selected when calibrating the ammeter. I took the wire from the shunt of a burnt pointer tester. One end of the copper strips is soldered directly to the positive output terminal; a thick conductor coming from the contacts of relay P3 is soldered to the second strip. The yellow and red wires go to the pointer device from the shunt.

Printed circuit board of the charger automation unit

The circuit for automatic regulation and protection against incorrect connection of the battery to the charger is soldered on a printed circuit board made of foil fiberglass.



The photo shows the appearance of the assembled circuit. The printed circuit board design for the automatic control and protection circuit is simple, the holes are made with a pitch of 2.5 mm.



The photo above shows a view of the printed circuit board from the installation side with parts marked in red. This drawing is convenient when assembling a printed circuit board.



The printed circuit board drawing above will be useful when manufacturing it using laser printer technology.



And this drawing of a printed circuit board will be useful when applying current-carrying tracks of a printed circuit board manually.

Charger voltmeter and ammeter scale

The scale of the pointer instrument of the V3-38 millivoltmeter did not fit the required measurements, so I had to draw my own version on the computer, print it on thick white paper and glue the moment on top of the standard scale with glue.



Thanks to the larger scale size and calibration of the device in the measurement area, the voltage reading accuracy was 0.2 V.

Wires for connecting the charger to the battery and network terminals

The wires for connecting the car battery to the charger are equipped with alligator clips on one side and split ends on the other side. The red wire is selected to connect the positive terminal of the battery, and the blue wire is selected to connect the negative terminal. The cross-section of the wires for connecting to the battery device must be at least 1 mm 2.



The charger is connected to the electrical network using a universal cord with a plug and socket, as is used to connect computers, office equipment and other electrical appliances.

About Charger Parts

Power transformer T1 is used type TN61-220, the secondary windings of which are connected in series, as shown in the diagram. Since the efficiency of the charger is at least 0.8 and the charging current usually does not exceed 6 A, any transformer with a power of 150 watts will do. The secondary winding of the transformer must provide a voltage of 18-20 V at a load current of up to 8 A. You can calculate the number of turns of the secondary winding of the transformer using a special calculator.


Capacitors C4-C9 type MBGCh for a voltage of at least 350 V. You can use capacitors of any type designed to operate in alternating current circuits.


Diodes VD2-VD5 are suitable for any type, rated for a current of 10 A. VD7, VD11 - any pulsed silicon ones. VD6, VD8, VD10, VD5, VD12 and VD13 are any that can withstand a current of 1 A. LED VD1 is any, VD9 I used type KIPD29. A distinctive feature of this LED is that it changes color when the connection polarity is changed. To switch it, contacts K1.2 of relay P1 are used. When charging with the main current, the LED lights up yellow, and when switching to the battery charging mode, it lights up green. Instead of a binary LED, you can install any two single-color LEDs by connecting them according to the diagram below.



The operational amplifier chosen is KR1005UD1, an analogue of the foreign AN6551. Such amplifiers were used in the sound and video unit of the VM-12 video recorder. The good thing about the amplifier is that it does not require two-polar power supply or correction circuits and remains operational at a supply voltage of 5 to 12 V. It can be replaced with almost any similar one. For example, LM358, LM258, LM158 are good for replacing microcircuits, but their pin numbering is different, and you will need to make changes to the printed circuit board design.


Relays P1 and P2 are any for a voltage of 9-12 V and contacts designed for a switching current of 1 A. P3 for a voltage of 9-12 V and a switching current of 10 A, for example RP-21-003. If there are several contact groups in the relay, then it is advisable to solder them in parallel.


Switch S1 of any type, designed to operate at a voltage of 250 V and having a sufficient number of switching contacts. If you don’t need a current regulation step of 1 A, then you can install several toggle switches and set the charging current, say, 5 A and 8 A. If you charge only car batteries, then this solution is completely justified. Switch S2 is used to disable the charge level control system. If the battery is charged with a high current, the system may operate before the battery is fully charged. In this case, you can turn off the system and continue charging manually.


Any electromagnetic head for a current and voltage meter is suitable, with a total deviation current of 100 μA, for example type M24. If there is no need to measure voltage, but only current, then you can install a ready-made ammeter designed for a maximum constant measuring current of 10 A, and monitor the voltage with an external dial tester or multimeter by connecting them to the battery contacts.

Setting up the automatic adjustment and protection unit of the automatic control unit

If the board is assembled correctly and all radio elements are in good working order, the circuit will work immediately. All that remains is to set the voltage threshold with resistor R5, upon reaching which the battery charging will be switched to low current charging mode.


The adjustment can be made directly while charging the battery. But still, it’s better to play it safe and check and configure the automatic control and protection circuit of the automatic control unit before installing it in the housing. To do this, you will need a DC power supply, which has the ability to regulate the output voltage in the range from 10 to 20 V, designed for an output current of 0.5-1 A. As for measuring instruments, you will need any voltmeter, pointer tester or multimeter designed to measure DC voltage, with a measurement limit from 0 to 20 V.

Checking the voltage stabilizer

After installing all the parts on the printed circuit board, you need to apply a supply voltage of 12-15 V from the power supply to the common wire (minus) and pin 17 of the DA1 chip (plus). By changing the voltage at the output of the power supply from 12 to 20 V, you need to use a voltmeter to make sure that the voltage at output 2 of the DA1 voltage stabilizer chip is 9 V. If the voltage is different or changes, then DA1 is faulty.


Microcircuits of the K142EN series and analogues have protection against short circuits at the output, and if you short-circuit its output to the common wire, the microcircuit will enter protection mode and will not fail. If the test shows that the voltage at the output of the microcircuit is 0, this does not always mean that it is faulty. It is quite possible that there is a short circuit between the tracks of the printed circuit board or one of the radio elements in the rest of the circuit is faulty. To check the microcircuit, it is enough to disconnect its pin 2 from the board and if 9 V appears on it, it means that the microcircuit is working, and it is necessary to find and eliminate the short circuit.

Checking the surge protection system

I decided to start describing the operating principle of the circuit with a simpler part of the circuit, which is not subject to strict operating voltage standards.


The function of disconnecting the charger from the mains in the event of a battery disconnection is performed by a part of the circuit assembled on an operational differential amplifier A1.2 (hereinafter referred to as the op-amp).

Operating principle of an operational differential amplifier

Without knowing the operating principle of the op-amp, it is difficult to understand the operation of the circuit, so I will give a brief description. The op-amp has two inputs and one output. One of the inputs, which is designated in the diagram by a “+” sign, is called non-inverting, and the second input, which is designated by a “–” sign or a circle, is called inverting. The word differential op-amp means that the voltage at the output of the amplifier depends on the difference in voltage at its inputs. In this circuit, the operational amplifier is switched on without feedback, in comparator mode – comparing input voltages.


Thus, if the voltage at one of the inputs remains unchanged, and at the second it changes, then at the moment of passing through the point of equality of voltages at the inputs, the voltage at the output of the amplifier will change abruptly.

Testing the Surge Protection Circuit

Let's return to the diagram. The non-inverting input of amplifier A1.2 (pin 6) is connected to a voltage divider assembled across resistors R13 and R14. This divider is connected to a stabilized voltage of 9 V and therefore the voltage at the point of connection of the resistors never changes and is 6.75 V. The second input of the op-amp (pin 7) is connected to the second voltage divider, assembled on resistors R11 and R12. This voltage divider is connected to the bus through which the charging current flows, and the voltage on it changes depending on the amount of current and the state of charge of the battery. Therefore, the voltage value at pin 7 will also change accordingly. The divider resistances are selected in such a way that when the battery charging voltage changes from 9 to 19 V, the voltage at pin 7 will be less than at pin 6 and the voltage at the op-amp output (pin 8) will be more than 0.8 V and close to the op-amp supply voltage. The transistor will be open, voltage will be supplied to the winding of relay P2 and it will close contacts K2.1. The output voltage will also close diode VD11 and resistor R15 will not participate in the operation of the circuit.


As soon as the charging voltage exceeds 19 V (this can only happen if the battery is disconnected from the output of the charger), the voltage at pin 7 will become greater than at pin 6. In this case, the voltage at the op-amp output will abruptly decrease to zero. The transistor will close, the relay will de-energize and contacts K2.1 will open. The supply voltage to the RAM will be interrupted. At the moment when the voltage at the output of the op-amp becomes zero, diode VD11 opens and, thus, R15 is connected in parallel to R14 of the divider. The voltage at pin 6 will instantly decrease, which will eliminate false positives when the voltages at the op-amp inputs are equal due to ripple and interference. By changing the value of R15, you can change the hysteresis of the comparator, that is, the voltage at which the circuit will return to its original state.


When the battery is connected to the RAM, the voltage at pin 6 will again be set to 6.75 V, and at pin 7 it will be less and the circuit will begin to operate normally.


To check the operation of the circuit, it is enough to change the voltage on the power supply from 12 to 20 V and connect a voltmeter instead of relay P2 to observe its readings. When the voltage is less than 19 V, the voltmeter should show a voltage of 17-18 V (part of the voltage will drop across the transistor), and if it is higher, zero. It is still advisable to connect the relay winding to the circuit, then not only the operation of the circuit will be checked, but also its functionality, and by the clicks of the relay it will be possible to control the operation of the automation without a voltmeter.


If the circuit does not work, then you need to check the voltages at inputs 6 and 7, the op-amp output. If the voltages differ from those indicated above, you need to check the resistor values ​​of the corresponding dividers. If the divider resistors and diode VD11 are working, then, therefore, the op-amp is faulty.


To check the circuit R15, D11, it is enough to disconnect one of the terminals of these elements; the circuit will work, only without hysteresis, that is, it turns on and off at the same voltage supplied from the power supply. Transistor VT12 can be easily checked by disconnecting one of the R16 pins and monitoring the voltage at the output of the op-amp. If the voltage at the output of the op-amp changes correctly, and the relay is always on, it means that there is a breakdown between the collector and emitter of the transistor.

Checking the battery shutdown circuit when it is fully charged

The operating principle of op amp A1.1 is no different from the operation of A1.2, with the exception of the ability to change the voltage cutoff threshold using trimming resistor R5.


The divider for the reference voltage is assembled on resistors R7, R8 and the voltage at pin 4 of the op-amp should be 4.5 V. This issue is discussed in more detail in the website article “How to charge a battery.”


To check the operation of A1.1, the supply voltage supplied from the power supply smoothly increases and decreases within 12-18 V. When the voltage reaches 15.6 V, relay P1 should turn off and contacts K1.1 switch the charger to low current charging mode through a capacitor C4. When the voltage level drops below 12.54 V, the relay should turn on and switch the charger into charging mode with a current of a given value.


The switching threshold voltage of 12.54 V can be adjusted by changing the value of resistor R9, but this is not necessary.


Using switch S2, it is possible to disable the automatic operating mode by turning on relay P1 directly.

Capacitor charger circuit

without automatic shutdown


For those who do not have sufficient experience in assembling electronic circuits or do not need to automatically turn off the charger after charging the battery, I offer a simplified version of the circuit diagram for charging acid-acid car batteries. A distinctive feature of the circuit is its ease of repetition, reliability, high efficiency and stable charging current, protection against incorrect battery connection, and automatic continuation of charging in the event of a loss of supply voltage.



The principle of stabilizing the charging current remains unchanged and is ensured by connecting a block of capacitors C1-C6 in series with the network transformer. To protect against overvoltage on the input winding and capacitors, one of the pairs of normally open contacts of relay P1 is used.


When the battery is not connected, the contacts of relays P1 K1.1 and K1.2 are open and even if the charger is connected to the power supply, no current flows to the circuit. The same thing happens if you connect the battery incorrectly according to polarity. When the battery is connected correctly, the current from it flows through the VD8 diode to the winding of relay P1, the relay is activated and its contacts K1.1 and K1.2 are closed. Through closed contacts K1.1, the mains voltage is supplied to the charger, and through K1.2 the charging current is supplied to the battery.


At first glance, it seems that relay contacts K1.2 are not needed, but if they are not there, then if the battery is connected incorrectly, current will flow from the positive terminal of the battery through the negative terminal of the charger, then through the diode bridge and then directly to the negative terminal of the battery and diodes the charger bridge will fail.


The proposed simple circuit for charging batteries can be easily adapted to charge batteries at a voltage of 6 V or 24 V. It is enough to replace relay P1 with the appropriate voltage. To charge 24-volt batteries, it is necessary to provide an output voltage from the secondary winding of transformer T1 of at least 36 V.


If desired, the circuit of a simple charger can be supplemented with a device for indicating charging current and voltage, turning it on as in the circuit of an automatic charger.

How to charge a car battery

automatic homemade memory


Before charging, the battery removed from the car must be cleaned of dirt and its surfaces wiped with an aqueous solution of soda to remove acid residues. If there is acid on the surface, then the aqueous soda solution foams.


If the battery has plugs for filling acid, then all the plugs must be unscrewed so that the gases formed in the battery during charging can escape freely. It is imperative to check the electrolyte level, and if it is less than required, add distilled water.


Next, you need to set the charge current using switch S1 on the charger and connect the battery, observing the polarity (the positive terminal of the battery must be connected to the positive terminal of the charger) to its terminals. If switch S3 is in the down position, the arrow on the charger will immediately show the voltage the battery is producing. All you have to do is plug the power cord into the socket and the battery charging process will begin. The voltmeter will already begin to show the charging voltage.


You can calculate the battery charging time using an online calculator, choose the optimal charging mode for the car battery and familiarize yourself with the rules of its operation by visiting the website article “How to charge the battery.”

Compliance with the operating mode of rechargeable batteries, and in particular the charging mode, guarantees their trouble-free operation throughout their entire service life. Batteries are charged with a current, the value of which can be determined by the formula

where I is the average charging current, A., and Q is the nameplate electric capacity of the battery, Ah.

A classic charger for a car battery consists of a step-down transformer, a rectifier and a charging current regulator. Wire rheostats (see Fig. 1) and transistor current stabilizers are used as current regulators.

In both cases, these elements generate significant thermal power, which reduces the efficiency of the charger and increases the likelihood of its failure.

To regulate the charging current, you can use a store of capacitors connected in series with the primary (mains) winding of the transformer and acting as reactances that dampen excess network voltage. A simplified version of such a device is shown in Fig. 2.

In this circuit, thermal (active) power is released only on the diodes VD1-VD4 of the rectifier bridge and the transformer, so the heating of the device is insignificant.

The disadvantage in Fig. 2 is the need to provide a voltage on the secondary winding of the transformer one and a half times greater than the rated load voltage (~ 18÷20V).

The charger circuit, which provides charging of 12-volt batteries with a current of up to 15 A, and the charging current can be changed from 1 to 15 A in steps of 1 A, is shown in Fig. 3.

It is possible to automatically turn off the device when the battery is fully charged. It is not afraid of short-term short circuits in the load circuit and breaks in it.

Switches Q1 - Q4 can be used to connect various combinations of capacitors and thereby regulate the charging current.

The variable resistor R4 sets the response threshold of K2, which should operate when the voltage at the battery terminals is equal to the voltage of a fully charged battery.

In Fig. Figure 4 shows another charger in which the charging current is smoothly regulated from zero to the maximum value.

The change in current in the load is achieved by adjusting the opening angle of the thyristor VS1. The control unit is made on a unijunction transistor VT1. The value of this current is determined by the position of the variable resistor R5. The maximum battery charging current is 10A, set with an ammeter. The device is provided on the mains and load side with fuses F1 and F2.

A version of the charger printed circuit board (see Fig. 4), 60x75 mm in size, is shown in the following figure:

In the diagram in Fig. 4, the secondary winding of the transformer must be designed for a current three times greater than the charging current, and accordingly, the power of the transformer must also be three times greater than the power consumed by the battery.

This circumstance is a significant drawback of chargers with a current regulator thyristor (thyristor).

Note:

The rectifier bridge diodes VD1-VD4 and the thyristor VS1 must be installed on radiators.

It is possible to significantly reduce power losses in the SCR, and therefore increase the efficiency of the charger, by moving the control element from the circuit of the secondary winding of the transformer to the circuit of the primary winding. such a device is shown in Fig. 5.

In the diagram in Fig. 5 control unit is similar to that used in the previous version of the device. SCR VS1 is included in the diagonal of the rectifier bridge VD1 - VD4. Since the current of the primary winding of the transformer is approximately 10 times less than the charging current, relatively little thermal power is released on the diodes VD1-VD4 and the thyristor VS1 and they do not require installation on radiators. In addition, the use of an SCR in the primary winding circuit of the transformer made it possible to slightly improve the shape of the charging current curve and reduce the value of the current curve shape coefficient (which also leads to an increase in the efficiency of the charger). The disadvantage of this charger is the galvanic connection with the network of elements of the control unit, which must be taken into account when developing a design (for example, use a variable resistor with a plastic axis).

A version of the printed circuit board of the charger in Figure 5, measuring 60x75 mm, is shown in the figure below:

Note:

The rectifier bridge diodes VD5-VD8 must be installed on radiators.

In the charger in Figure 5 there is a diode bridge VD1-VD4 type KTs402 or KTs405 with the letters A, B, C. Zener diode VD3 type KS518, KS522, KS524, or made up of two identical zener diodes with a total stabilization voltage of 16÷24 volts (KS482, D808 , KS510, etc.). Transistor VT1 is unijunction, type KT117A, B, V, G. The diode bridge VD5-VD8 is made up of diodes, with a working current not less than 10 amperes(D242÷D247, etc.). The diodes are installed on radiators with an area of ​​at least 200 sq.cm, and the radiators will become very hot; a fan can be installed in the charger case for ventilation.

November 26, 2016

Car enthusiasts who do not change their cars every 2 years will sooner or later encounter a discharged battery. This happens both due to its wear and the fault of other elements of the on-board electrical network. To continue to use the battery, you need to constantly recharge it. There are two options here: buy a factory-made device for this purpose or assemble a charger for the car with your own hands.

Briefly about factory charger models

The retail chain sells 3 types of devices designed to restore car power supplies:

  • pulse;
  • automatic;
  • transformer charging and starting devices.

The first type of charger is capable of fully charging batteries using pulses in two modes - first at a constant voltage, and then at a constant current. These are the simplest and most affordable products suitable for recharging all types of car batteries. Automatic models are more complex, but do not require supervision during operation. Despite the higher price, such chargers are the best choice for a novice driver, since thanks to the protection systems they will never overheat or damage the battery.

Recently, mobile devices have appeared on sale, equipped with their own battery, which transfers charge to the car when necessary. But they will also have to be periodically charged from a 220 V power supply.

Powerful transformer devices, capable of not only recharging the power source, but also rotating the machine’s starter, are more related to professional installations. Such a charger, although it has wide capabilities, costs a lot of money, so it is of little interest to ordinary users.

But what to do when the battery is already dead, there is no charger at home yet, and you need to go to work tomorrow? A one-time option is to turn to neighbors or friends for help, but it is better to make a primitive memory device with your own hands.

What should the device consist of?

The main elements of any charger are:

  1. 220 V mains voltage converter - coil or transformer. Its task is to provide a voltage acceptable for recharging the battery, which is 12-15 V.
  2. Rectifier. It converts alternating current from household electricity into direct current, which is necessary to restore battery charge.
  3. Switch and fuse.
  4. Wires with terminals.

Factory devices are additionally equipped with instruments for measuring voltage and current, protective elements and timers. A homemade charger can also be upgraded to the factory level, provided that you have knowledge of electrical engineering. If you only know the basics, then at home you can assemble the following primitive structures:

  • charging from a laptop adapter;
  • charger made from parts from old household appliances.

Recharging using a laptop adapter

Devices for powering laptops already have a built-in converter and rectifier. In addition, there are elements of stabilization and smoothing of the output voltage. To use them as a charging device, you should check the value of this voltage. It must be at least 12 V, otherwise the car battery will not charge.

To check, you need to insert the adapter plug into the socket and connect the positive terminal of the voltmeter to the contact located inside the round plug. The negative contact is located outside. If the voltmeter shows 12 V or more, then connect the adapter to the battery as follows:

  1. Take 2 copper wires, strip their ends and attach them to the plug contacts.
  2. Connect the negative terminal of the battery to the wire from the external contact of the adapter.
  3. Connect the wire from the internal contact to the “positive” terminal.
  4. Place a low-power 12 V car light bulb into the gap in the positive wire; it will serve as a ballast resistor.
  5. Open the battery cover or unscrew the plugs and plug in the adapter.

Such charging for a car battery is not capable of restoring a completely dead power source. But if the charge has been partially lost, then in a few hours the battery can be recharged to start the engine.

As a charger, it is allowed to use other types of adapters that provide an output voltage of 12-15 V.

Negative point: if the “banks” are short-circuited inside the battery, then the low-power adapter can quickly fail, and you will be left without a car and a laptop. Therefore, you should carefully monitor the process for the first half hour and if it overheats, immediately turn off charging.

Assembling a memory from old radio components

The option with adapters is not suitable for constant use, since there is a risk of damaging the device, despite the fact that the charging speed is quite low. A more powerful and reliable charger can be made from parts of old televisions and tube radios, although you will have to work hard to make it. To assemble the circuit you will need:

  • power transformer that reduces the voltage to 12-15 V;
  • diodes of the D214...D243 series – 4 pcs.;
  • electrolytic capacitor with a nominal value of 1000 μF, rated at 25 V;
  • old toggle switch (220 V, 6 A) and 1 A fuse socket;
  • wires with alligator clips;
  • suitable metal housing.

The first step is to check the voltage at the output of the transformer by connecting the primary (power) winding to the mains and taking readings from the ends of other windings (there are several of them). Having selected contacts with the appropriate voltage, bite off or insulate the rest.

An option with a voltage of 24...30 V is suitable if 12 V is not available. It can be reduced by half by changing the scheme.

Assemble a homemade battery charger in this order:

  1. Install the transformer in a metal case, place 4 diodes there, screwed with nuts to a sheet of getinax or textolite.
  2. Connect the power cable to the power winding of the transformer through a switch and fuse.
  3. Solder the diode bridge according to the diagram and connect it with wires to the secondary winding of the transformer.
  4. Place a capacitor at the output of the diode bridge, observing the polarity.
  5. Connect the charging wires with alligator clips.

To monitor voltage and current, it is advisable to install an indicating ammeter and voltmeter in the memory. The first is connected to the circuit in series, the second in parallel. Subsequently, you can improve the device by adding a manual voltage regulator, a pilot lamp and a safety relay.

If the transformer produces up to 30 V, then instead of the diode bridge, install 1 diode connected in series. It will “rectify” the alternating current and reduce it by half - to 15 V.

The speed of charging the battery with a homemade device depends on the power of the transformer, but it will be much higher than when recharging with an adapter. The disadvantage of a self-made device is the lack of automation, which is why the process will have to be controlled so that the electrolyte does not boil away and the battery does not overheat.

Almost every modern motorist has encountered battery problems. In order to resume its normal operation, you must have a mobile charger. It allows you to revive the device in a matter of seconds.

The main component of any charging is the transformer. Thanks to it, you can make a simple charger with your own hands at home.

Here you will find out what parts you will need when assembling the structure. Advice from experienced experts will help you avoid common mistakes.

How should the battery be charged?

It is necessary to charge the battery according to certain rules that will help extend the service life of this device. Violation of one of the points may cause premature failure of parts.

Charging parameters must be selected in accordance with the characteristics of the car battery. This process allows adjustment of a specialized device that is sold in specialized departments. As a rule, it has a fairly high cost, which makes it not accessible to every consumer.

That is why most people prefer to make the charger power supply with their own hands. Before you begin the work process, you need to familiarize yourself with the types of chargers for the car.


Types of charging for batteries

The process of charging batteries is the restoration of lost power. To do this, use special terminals that produce constant current and constant voltage.

It is important to observe polarity during the connection process. Incorrect installation will result in a short circuit, which will cause parts inside the vehicle to catch fire.

To quickly reanimate the battery, it is recommended to use constant voltage. It can restore the car's functionality in 5 hours.

Simple charger circuit

What can a charger be made from? All parts and consumables can be used from old household appliances.


For this you will need:

A step-down transformer. It is found in old tube TVs. It helps to reduce 220 V to the required 15 V. The output of the transformer will produce an alternating voltage. In the future, it is recommended to straighten it. To do this you will need a rectifying diode. The diagrams on how to make a charger with your own hands show a drawing of the connections of all elements.

Diode bridge. Thanks to it, negative resistance is obtained. The current is pulsating, but controlled. In some cases, a diode bridge with a smoothing capacitor is used. It provides constant current.

Consumables. There are fuses and meters here. They help control the entire charging process.

Multimeter. It will indicate power fluctuations during the charging process of the car battery.

This device will become very hot during operation. A special cooler will help prevent the installation from overheating. It will control power surges. It is used instead of a diode bridge. The photo of the do-it-yourself charger shows ready-made equipment for recharging a car battery.

The process can be regulated by changing the resistance. To do this, use a tuning resistor. This method is used in most cases.

You can manually adjust the supply current using two transistors and a trimming resistor. These parts ensure a uniform supply of constant voltage and ensure the correct level of voltage at the output. There are many ideas and instructions on the Internet on how to make a charger.

DIY charger photo

New on the site

>

Most popular