Домой Освещение Как называется двигатель внутреннего сгорания. Как работает двигатель внутреннего сгорания. Принцип работы системы охлаждения двигателя

Как называется двигатель внутреннего сгорания. Как работает двигатель внутреннего сгорания. Принцип работы системы охлаждения двигателя

Строение двигателя внутреннего сгорания известно широкой массе автолюбителей. Но, вот не все, зная какие детали установлены в моторе, знают их расположение и принцип работы. Чтобы полностью понять устройство автомобильного движка необходимо посмотреть разрез силового агрегата.

Работа двигателя в разрезе представлена в данном видеоматериале

Работа двигателя

Что понимать расположение деталей автомобильного двигателя и перед тем, как показать двигатель в разрезе необходимо понимать принцип работы мотора. Итак, рассмотрим, что приводит в движение колеса автомобиля.

Топливо, которое находиться в бензобаке при помощи топливного насоса подаётся на форсунки или карбюратор. Стоит отметить, что горючее проходит такой важный этап, как фильтрующий топливный элемент, который останавливает примеси и чужеродные элементы, что не должны попасть в камеру сгорания.

После нажатия педали акселератора электронный блок управления даёт команду подать горючее во впускной коллектор. Для карбюраторных ДВС - педаль газа привязана к карбюратору и чем больше давление идёт на педаль, тем больше топлива льётся в камеру сгорания.

Далее, со второй стороны подаётся воздух, проходя воздушный фильтр и дроссель. Чем больше открывается заслонка, тем большее количество воздуха поступит непосредственно во впускной коллектор, где образуется воздушно-топливная смесь.

В коллекторе воздушно-топливная смесь равномерно разделяется между цилиндрами и поочерёдно поступает через впускные клапана в камеры сгорания. Когда поршень движется в ВТМ, создаётся давление смеси и свеча зажигания образует искру, которая поджигает горючее. От данной детонации и взрыва поршень начинает двигаться вниз в НМТ.

Движение поршня передаётся на шатун, который прикреплён к коленчатому валу и приводит его в действие. Так, делает каждый поршень. Чем быстрее движутся поршни, тем больше обороты коленчатого вала.

После того, как воздушно-топливная смесь сгорела, открывается выпускной клапан, который выпускает отработанные газы в выпускной коллектор, а затем сквозь выхлопную систему наружу. На современных автомобилях, часть отработанных газов помогает работе двигателя, поскольку приводит в работу турбонаддув, который увеличивает мощность ДВС.

Также, стоит отметить, что на современных движках не обойтись без системы охлаждения, жидкость которой циркулирует через рубашку охлаждения и подкапотное пространство, чем обеспечивает постоянную рабочую температуру.

Двигатель в разрезе

Теперь можно рассмотреть, как выглядит ДВС в разрезе. Для большей наглядности и понятности рассмотрим двигатель ВАЗ в разрезе, с которым знакомы большинство автомобилистов.

На схеме представлен двигатель ВАЗ 2121 в продольном разрезе:

1. Коленчатый вал; 2. Вкладыш коренного подшипника коленчатого вала; 3. Звёздочка коленчатого вала; 4. Передний сальник коленчатого вала; 5. Шкив коленчатого вала; 6. Храповик; 7. Крышка привода механизма газораспределения; 8. Ремень привода насоса охлаждающей жидкости и генератора; 9. Шкив генератора; 10. Звёздочка привода масляного насоса, топливного насоса и распределителя зажигания; 11. Валик привода масляного насоса, топливного насоса и распределителя зажигания; 12. Вентилятор системы охлаждения; 13. Блок цилиндров; 14. Головка цилиндров; 15. Цепь привода механизма газораспределения; 16. Звёздочка распределительного вала; 17. Выпускной клапан; 18. Впускной клапан; 19. Корпус подшипников распределительного вала; 20. Распределительный вал; 21. Рычаг привода клапана; 22. Крышка головки цилиндров; 23. Датчик указателя температуры охлаждающей жидкости; 24. Свеча зажигания; 25. Поршень; 26. Поршневой палец; 27. Держатель заднего сальника коленчатого вала; 28. Упорное полукольцо коленчатого вала; 29. Маховик; 30. Верхнее компрессионное кольцо; 31. Нижнее компрессионное кольцо; 32. Маслосъёмное кольцо; 33. Передняя крышка картера сцепления; 34. Масляный картер; 35. Передняя опора силового агрегата; 36. Шатун; 37. Кронштейн передней опоры; 38. Силовой агрегат; 39. Задняя опора силового агрегата.

Кроме рядного расположения цилиндров двигателя, как показано на схеме выше существуют ДВС с V- и W-образным расположением поршневого механизма. Рассмотри W-образный мотор в разрезе на примере силового агрегата Audi. Цилиндры ДВС располагаются так, что если смотреть на мотор спереди, то образуется английская буква W.

Данные движки обладают повышенной мощностью и используются на спорткарах. Данная система была предложена японским производителем Субару, но из-за высокого расхода горючего не получила широкого и массового применения.

V- и W-образные ДВС имеют повышенную мощность и крутящий момент, что делает их спортивной направленности. Единственным недостатком такой конструкции является то, что такие силовые агрегаты потребляют значительное количество топлива.

С развитием автомобилестроения компания General Motors предложила систему отключения половины цилиндров. Так, эти неработающие цилиндры приводятся в действие, только когда необходимо увеличить мощность или быстро разогнать автомобиль.

Такая система позволила значительно экономить топливо в повседневном использовании транспортного средства. Эта функция привязана к электронному блоку управления двигателем, поскольку, она регулирует, когда необходимо задействовать все цилиндры, а когда они не нужны.

Вывод

Принцип работы двигателя достаточно простой. Так, если посмотреть на разрез ДВС и понять расположение деталей можно легко разобраться с устройством движка, а также последовательности его процесса работы.

Вариантов расположения деталей мотора достаточно много и каждый автопроизводитель сам решает, как расположить цилиндры, сколько их будет, а также какую систему впрыска установить. Все это и даёт конструктивные особенности и характеристики мотора.

В этой статье поговорим об устройстве двигателя внутреннего сгорания узнаем принцип его работы. Рассмотрим его в разрезе. Несмотря на то, что двигатель внутреннего сгорания был изобретён уже очень давно, но он до сих пор пользуется огромной популярностью. Правда за большое количество времени конструкция двигателя внутреннего сгорания претерпела различные изменения.

Усилия инженеров постоянно направлены на облегчения веса двигателя, улучшения экономичности, увеличение мощности, а также уменьшения выброса вредных веществ.

Двигатели бывают бензиновые и дизельные. Также встречаются роторные и газотурбинные двигатели которые используются намного реже. О них мы поговорим в других статьях.

По расположению цилиндров двс бывают рядные,V- образные и опозитные. По количеству цилиндров 2,4,6,8,10,12,16. Встречаются и 5 цилиндровые двигатели внутреннего сгорания.

У каждой компоновки есть свои преимущества например рядный 6-ти цилиндровый двигатель это хорошо сбалансированный, но склонен к перегреву мотор. У V- образных двигателей другое преимущество они занимают меньше место под капотом, но при этом затрудняют обслуживание из-за ограниченного доступа. Раньше встречались и рядные 8 цилиндровые двигатели вероятней всего их не стало из-за сильной склонности к перегреву и они занимали много места под капотом.

По типу работы двс бывают двух типов: двух тактные и четырех тактные. Двух тактные двигатели внутреннего сгорания в основном применяются на мотоциклах. В автомобилях практически всегда использовались 4 тактные двигатели.

Устройство двс

Рассмотрим двигатель в разрезе

Двигатель внутреннего сгорания состоит из следующих компонентов и вспомогательных систем.


1) Блок цилиндров. Блок цилиндров и является главным телом двигателя в котором и происходит работа поршней. Обычно состоит из чугуна и обладает охладительной рубашкой для охлаждения.


2) Механизм ГРМ. Газораспределительный механизм регулирует подачу топливно-воздушной смеси и отвод выхлопных газов. С помощью кулачков распредвала которые воздействуют на пружины клапанов. Клапана открываются либо, закрываются в зависимости от такта двигателя. При открытии впускных клапанов цилиндры наполняются топливно-воздушной смесью. При открытии выпускных клапанов происходит отвод выхлопных газов.



4) КШМ- Кривошипно-шатунный механизм. Благодаря передаче энергии шатуна на коленвал совершается полезная работа.

5) Масляный поддон. В масляном поддоне находится моторное масло которое и используется системой смазки для смазывания подшипников и компонентов двс.

6) Система охлаждения. Благодаря системе охлаждения двигатель внутреннего сгорания поддерживает оптимальную температуру. Система охлаждения состоит из: помпы, радиатора, термостата, патрубков охлаждения, а также охладительной рубашки.

7) Система смазки. Система смазки служит для защиты компонентов двигателя от прежде временного износа. Кроме того благодаря моторному маслу в двигателе внутреннего сгорания происходит охлаждение и защита от коррозии. Система смазки состоит из: масляного насоса, масляного фильтра, масляных магистралей и масляного поддона.

8) Система питания. Система питания обеспечивает своевременную подачу топлива. Различается на 3 вида карбюратор, моновпрыск и инжектор.

Узнать более подробно о том, что лучше карбюратор или инжектор можно .

В карбюраторе топливно-воздушная смесь готовиться в карбюраторе для последующей подачи. Карбюратор обладает механическим топливным насосом.

Моновпрыск это по сути переход от карбюратора к инжектору или промежуточное звено. Благодаря блоку управления на одну единственную форсунку подаётся команда о необходимом количестве топлива.

Инжектор. Инжекторные системы топлива обладают. ЭБУ- электронный блок управления, форсунки, топливная рампа. Благодаря командам ЭБУ на форсунки подаётся сигнал о том какое количество топлива необходимо в данный момент. Про ЭБУ более подробно можно .

На сегодняшний момент это самые распространенные топливные системы. Так как обладают рядом преимуществ. Экономичность, экологичность и лучшая отдача по сравнению с моновпрыском и карбюратором.

Также существует прямой впрыск топлива. Где форсунки впрыскивают топливо непосредственно в камеру сгорания, не используется часто по причине более сложной конструкции и меньшей надёжности по сравнению с распределительным впрыском. Преимущество такой конструкции в лучшей экономичности и экологичности.

9) Система зажигания. Система зажигания служит для воспламенения топливно-воздушной смеси. Состоит из высоковольтных проводов, катушек зажигания, свеч зажигания. Стартер запускает двигатель внутреннего сгорания. Более подробно о стартере можно узнать перейдя по ссылке.

10) Маховик. Главной задачей маховика является запуск двс с помощью стартера через коленвал.

Принцип работы


Двигатель внутреннего сгорания совершает 4 цикла или такта.

1) Впуск. На этой стадии происходит впуск топливно-воздушной смеси.

2) Сжатие. При сжатии происходит сжатие поршнем топливно-воздушной смеси.

3) Рабочий ход. Поршень под давлением газов отправляется в НМТ(нижнюю мертвую точку). Поршень передает энергию на шатун, затем через шатун передается энергия на коленвал. Таким образом происходит обмен энергии газов на полезную механическую работу.

4) Выпуск. Поршень отправляется вверх. Выпускные клапана открываются, чтобы выпустить продукты распада.

Инновации двигателя внутреннего сгорания

1) Использование в двс лазеров для воспламенения топлива. По сравнению со свечами зажигания у лазеров будет проще настройка угла зажигания и будет большая мощность. Обычные свечи при сильной искре быстро выходят из строя.


2) Технология FreeValve эта технология подразумевает двигатель без распредвалов. Вместо распредвалов клапанами управляют индивидуальные приводы на каждый клапан. Экологичность и экономичность таких двс выше. Технология разработана дочерней компанией Koniesseg и имеет схожее название FreeValve. Технология пока сырая, но уже продемонстрировала ряд преимуществ. Что будет дальше время покажет.


3) Разделение двигателей на холодную и горячую части. Суть технологии в том, что двигатель делится на две части. В холодной будет происходить впуск и сжатие так как эти стадии более эффективно будут происходить в холодной части. Благодаря этой технологии инженеры обещают улучшение производительности на 30-40%. В горячей части будут происходить воспламенение и выхлоп.

А о каких будущих технологиях двигателя внутреннего сгорания Вы слышали обязательно поделитесь этим в комментариях.

Изобретение двигателя внутреннего сгорания позволило человечеству в развитии шагнуть значительно вперед. Сейчас двигатели, которые используют для выполнения полезной работы энергию, выделяемую при сгорании топлива, используются во многих сферах деятельности человека. Но самое большее распространение эти двигатели получили в транспорте.

Все силовые установки состоят из механизмов, узлов и систем, которые взаимодействуя между собой, обеспечивают преобразование энергии, выделяемой при сгорании легковоспламеняемых продуктов во вращательное движение коленчатого вала. Именно это движение и является его полезной работой.

Чтобы было понятнее, следует разобраться с принципом работы силовой установки внутреннего сгорания.

Принцип работы

При сгорании горючей смеси, состоящей из легковоспламеняемых продуктов и воздуха, выделяется больше количество энергии. Причем в момент воспламенения смеси она значительно увеличивается в объеме, возрастает давление в эпицентре воспламенения, по сути, происходит маленький взрыв с высвобождением энергии. Этот процесс и взят за основу.

Если сгорание будет производиться в закрытом пространстве – возникающее при сгорании давление будет давить на стенки этого пространства. Если одну из стенок сделать подвижной, то давление, пытаясь увеличить объем замкнутого пространства, будет перемещать эту стенку. Если к этой стенке присоединить какой-нибудь шток, то она уже будет выполнять механическую работу – отодвигаясь, будет толкать этот шток. Соединив шток с кривошипом, при перемещении он заставит провернуться кривошип относительно своей оси.

В этом и заключается принцип работы силового агрегата с внутренним сгоранием – имеется закрытое пространство (гильза цилиндра) с одной подвижной стенкой (поршнем). Стенка штоком (шатуном) связана с кривошипом (коленчатым валом). Затем производится обратное действие – кривошип, делая полный оборот вокруг оси, толкает штоком стенку и так возвращается обратно.

Но это только принцип работы с пояснением на простых составляющих. На деле же процесс выглядит несколько сложнее, ведь надо же вначале обеспечить поступление смеси в цилиндр, сжать ее для лучшего воспламенения, а также вывести продукты горения. Эти действия получили название тактов.

Всего тактов 4:

  • впуск (смесь поступает в цилиндр);
  • сжатие (смесь сжимается за счет уменьшения объема внутри гильзы поршнем);
  • рабочий ход (после воспламенения смесь из-за своего расширения толкает поршень вниз);
  • выпуск (отведение продуктов горения из гильзы для подачи следующей порции смеси);

Такты поршневого двигателя

Из этого следует, что полезное действие имеет только рабочий ход, три других – подготовительные. Каждый такт сопровождается определенным перемещением поршня. При впуске и рабочем ходе он движется вниз, а при сжатии и выпуске – вверх. А поскольку поршень связан с коленчатым валом, то каждый такт соответствует определенному углу проворота вала вокруг оси.

Реализация тактов в двигателе делается двумя способами. Первый – с совмещением тактов. В таком моторе все такты выполняются за один полный проворот коленвала. То есть, пол-оборота колен. вала, при котором выполняется движение поршня вверх или вниз сопровождается двумя тактами. Эти двигатели получили название 2-тактных.

Второй способ – раздельные такты. Одно движение поршня сопровождается только одним тактом. В итоге, чтобы произошел полный цикл работы – требуется 2 оборота колен. вала вокруг оси. Такие двигатели получили обозначение 4-тактных.

Блок цилиндров

Теперь само устройство двигателя внутреннего сгорания. Основой любой установки является блок цилиндров. В нем и на нем располагаются все составные.

Конструктивные особенности блока зависят от некоторых условий – количества цилиндров, их расположения, способа охлаждения. Количество цилиндров, которые объедены в одном блоке, может варьироваться от 1 до 16. Причем блоки с нечетным количеством цилиндров встречаются редко, из выпускающихся ныне двигателей можно встретить только одно- и трехцилиндровые установки. Большинство же агрегатов идут с парным количеством цилиндров – 2, 4, 6, 8 и реже 12 и 16.

Четырёхцилиндровый блок

Силовые установки с количеством от 1 до 4 цилиндров обычно имеют рядное расположение цилиндров. Если количество цилиндров больше, их располагают в два ряда, при этом с определенным углом положения одного ряда относительно другого, так называемые силовые установки с V-образным положением цилиндров. Такое расположение позволило уменьшить габариты блока, но при этом изготовление их сложнее, чем рядным расположением.

Восьмицилиндровый блок

Существует еще один тип блоков, в которых цилиндры располагаются в два ряда и с углом между ними в 180 градусов. Эти двигатели получили название . Встречаются они в основном на мотоциклах, хотя есть и авто с таким типом силового агрегата.

Но условие количеством цилиндров и их расположением – необязательное. Встречаются 2-цилиндровые и 4-цилиндровые двигатели с V-образным или оппозитным положением цилиндров, а также 6-цилиндровые моторы с рядным расположением.

Используется два типа охлаждения, которые применяются на силовых установках – воздушное и жидкостное. От этого зависит конструктивная особенность блока. Блок с воздушным охлаждением менее габаритный и конструктивно проще, поскольку цилиндры не входят в его конструкцию.

Блок с жидкостным же охлаждением более сложен, в его конструкцию входят цилиндры, а поверх блока с цилиндрами расположена рубашка охлаждения. Внутри ее циркулирует жидкость, отводя тепло от цилиндров. При этом блок вместе рубашкой охлаждения представляют одно целое.

Сверху блок накрывается специальной плитой – головкой блока цилиндров (ГБЦ). Она является одной из составляющих, обеспечивающих закрытое пространство, в котором производится процесс горения. Конструкция ее может быть простая, не включающая дополнительные механизмы, или же сложная.

Кривошипно-шатунный механизм

Входящий в конструкцию мотора, обеспечивает преобразование возвратно-поступательного перемещения поршня в гильзе во вращательное движение коленвала. Основным элементом этого механизма является коленвал. Он имеет подвижное соединение с блоком цилиндров. Такое соединение обеспечивает вращение этого вала вокруг оси.

К одному из концов вала прикреплен маховик. В задачу маховика входит передача крутящего момента от вала дальше. Поскольку у 4-тактного двигателя на два оборота коленвала приходится только один полуоборот с полезным действием – рабочий ход, остальные же требуют обратного действия, которое и выполняется маховиком. Имея значительную массу и вращаясь, за счет своей кинетической энергии он обеспечивает провороты колен. вала во время подготовительных тактов.

Окружность маховика имеет зубчатый венец, при помощи его выполняется запуск силовой установки.

С другой стороны вала размещается приводная шестерня масляного насоса и газораспределительного механизма, а также фланец для крепления шкива.

Этот механизм также включает шатуны, которые обеспечивают передачу усилия от поршня к коленвалу и обратно. Крепление к валу шатунов тоже производится подвижно.

Поверхности блока цилиндров, колен. вала и шатунов в местах соединения напрямую между собой не контактируют, между ними находятся подшипники скольжения – вкладыши.

Цилиндро-поршневая группа

Состоит данная группа из гильз цилиндров, поршней, поршневых колец и пальцев. Именно в этой группе и происходит процесс сгорания и передача выделяемой энергии для преобразования. Сгорание происходит внутри гильзы, которая с одной стороны закрыта головкой блока, а с другой – поршнем. Сам поршень может перемещаться внутри гильзы.

Чтобы обеспечить максимальную герметичность внутри гильзы, используются поршневые кольца, которые предотвращают просачивание смеси и продуктов горения между стенками гильзы и поршнем.

Поршень посредством пальца подвижно соединен с шатуном.

Газораспределительный механизм

В задачу этого механизма входит своевременная подача горючей смеси или ее составляющих в цилиндр, а также отвод продуктов горения.

У двухтактных двигателей как такового механизма нет. У него подача смеси и отвод продуктов горения производится технологическими окнами, которые проделаны в стенках гильзы. Таких окон три – впускное, перепускное и выпускное.

Поршень, двигаясь производит открытие-закрытие того или иного окна, этим и выполняется наполнение гильзы топливом и отвод отработанных газов. Использование такого газораспределения не требует дополнительных узлов, поэтому ГБЦ у такого двигателя простая и в ее задачу входит только обеспечение герметичности цилиндра.

У 4-тактного двигателя механизм газораспределения имеется. Топливо у такого двигателя подается через специальные отверстия в головке. Эти отверстия закрыты клапанами. При надобности подачи топлива или отвода газов из цилиндра производится открывание соответствующего клапана. Открытие клапанов обеспечивает распределительный вал, который своими кулачками в нужный момент надавливает на необходимый клапан и тот открывает отверстие. Привод распредвала осуществляется от коленвала.

ГРМ с ременным и цепным приводом

Компоновка газораспределительного механизма может отличаться. Выпускаются двигатели с нижним расположением распредвала (он находится в блоке цилиндров) и верхним расположением клапанов (в ГБЦ). Передача усилия от вала к клапанам производится посредством штанг и коромысел.

Более распространенными являются моторы, у которых и вал и клапана имеют верхнее расположение. При такой компоновке вал тоже размещен в ГБЦ и действует он на клапана напрямую, без промежуточных элементов.

Система питания

Эта система обеспечивает подготовку топлива для дальнейшей подачи его в цилиндры. Конструкция этой системы зависит от используемого двигателем топлива. Основным сейчас является топливо, выделенное из нефти, причем разных фракций – бензин и дизельное топливо.

У двигателей, использующих бензин, имеется два вида топливной системы – карбюраторная и инжекторная. В первой системе смесеобразование производится в карбюраторе. Он производит дозировку и подачу топлива в проходящий через него поток воздуха, далее уже эта смесь подается в цилиндры. Состоит такая система и топливного бака, топливопроводов, вакуумного топливного насоса и карбюратора.

Карбюраторная система

То же делается и в инжекторных авто, но у них дозировка более точная. Также топливо в инжекторах добавляется в поток воздуха уже во впускном патрубке через форсунку. Эта форсунка топливо распыляет, что обеспечивает лучшее смесеобразование. Состоит инжекторная система из бака, насоса, расположенного в нем, фильтров, топливопроводов, и топливной рампы с форсунками, установленной на впускном коллекторе.

У дизелей же подача составляющих топливной смеси производится раздельно. Газораспределительный механизм через клапаны подает в цилиндры только воздух. Топливо же в цилиндры подается отдельно, форсунками и под высоким давлением. Состоит данная система из бака, фильтров, топливного насоса высокого давления (ТНВД) и форсунок.

Недавно появились инжекторные системы, которые работают по принципу дизельной топливной системы – инжектор с непосредственным впрыском.

Система отвода отработанных газов обеспечивает вывод продуктов горения из цилиндров, частичную нейтрализацию вредных веществ, и снижение звука при выводе отработанного газа. Состоит из выпускного коллектора, резонатора, катализатора (не всегда) и глушителя.

Система смазки

Система смазки обеспечивает снижение трения между взаимодействующими поверхностями двигателя, путем создания специальной пленки, предотвращающей прямой контакт поверхностей. Дополнительно осуществляет отвод тепла, защищает от коррозии элементы двигателя.

Состоит система смазки из масляного насоса, емкости для масла – поддона, маслозаборника, масляного фильтра, каналов, по которым масло движется к трущимся поверхностям.

Система охлаждения

Поддержание оптимальной рабочей температуры во время работы двигателя обеспечивается системой охлаждения. Используется два вида системы – воздушная и жидкостная.

Воздушная система производит охлаждение путем обдува цилиндров потом воздуха. Для лучшего охлаждения на цилиндрах сделаны ребра охлаждения.

В жидкостной системе охлаждение производится жидкостью, которая циркулирует в рубашке охлаждения с прямым контактом с внешней стенкой гильз. Состоит такая система из рубашки охлаждения, водяного насоса, термостата, патрубков и радиатора.

Система зажигания

Система зажигания применяется только на бензиновых двигателях. На дизелях воспламенение смеси производится от сжатия, поэтому такая система ему не нужна.

У бензиновых же авто, воспламенение выполняется от искры, проскакивающей в определенный момент между электродами свечи накаливания, установленной в головке блока так, что ее юбка находится в камере сгорания цилиндра.

Состоит система зажигания из катушки зажигания, распределителя (трамблера), проводки и свечей зажигания.

Электрооборудование

Обеспечивает это оборудование электроэнергией бортовую сеть авто, в том числе и систему зажигания. Этим оборудование также производится и запуск двигателя. Состоит оно из АКБ, генератора, стартера, проводки, всевозможных датчиков, которые следят за работой и состоянием двигателя.

Это и все устройство двигателя внутреннего сгорания. Он хоть и постоянно совершенствуется, однако принцип работы его не меняется, улучшаются лишь отдельные узлы и механизмы.

Современные разработки

Основной задачей, над которой бьются автопроизводители – это снижение потребление топлива и выбросов вредных веществ в атмосферу. Поэтому они постоянно улучшают систему питания, результатом является недавнее появление инжекторных систем с непосредственным впрыском.

Ищутся альтернативные виды топлива, последней разработкой в этом направлении пока является использование в качестве топлива спиртов, а также растительных масел.

Также ученые пытаются наладить производство двигателей с совершенно иным принципом работы. Таковым, к примеру, является двигатель Ванкеля, но особых успехов пока нет.

Autoleek

Что такое двигатель внутреннего сгорания (ДВС)

Все двигатели преобразуют какую-нибудь энергию в работу. Двигатели бывают разные – электрические, гидравлические, тепловые и т.д., в зависимости от того, какой вид энергии они преобразуют в работу. ДВС - двигатель внутреннего сгорания, это тепловой двигатель, в котором в полезную работу преобразуется теплота сгорающего в рабочей камере топлива, внутри двигателя. Также существуют двигателя с внешним сгоранием - это реактивные двигатели самолётов, ракет и т.д. в этих двигателях сгорание внешнее, поэтому они называются двигателями с внешним сгоранием.

Но простой обыватель чаще сталкивается с двигателем автомобиля и понимают под двигателем именно поршневой двигатель внутреннего сгорания. В поршневом ДВС, сила давления газов, возникающая при сгорании топлива в рабочей камере, воздействует на поршень, который совершает возвратно-поступательное движение в цилиндре двигателя и передаёт усилие на кривошипно-шатунный механизм, который преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Но это очень упрощенный взгляд на ДВС. На самом деле, в ДВС сосредоточены сложнейшие физические явления, пониманию которых посвятили себя многие выдающиеся ученые. Чтобы ДВС работал, в его цилиндрах, сменяя друг друга, происходят такие процессы, как подача воздуха, впрыск и распыление топлива, его смешивание с воздухом, воспламенение образовавшейся смеси, распространение пламени, удаление отработавших газов. На каждый процесс отводится несколько тысячных долей секунды. Добавьте к этому процессы, которые протекают в системах ДВС: теплообмен, течение газов и жидкостей, трение и износ, химические процессы нейтрализации отработавших газов, механические и тепловые нагрузки. Это далеко не полный перечень. И каждый из процессов должен быть организован наилучшим образом. Ведь из качества протекающих в ДВС процессов складывается качество двигателя в целом – его мощность, экономичность, шумность, токсичность, надежность, стоимость, вес и размеры.

Читайте также

Двигателя внутреннего сгорания бывают разные: , бензиновые, со смешенным питанием, и т.д. и это далеко не полный список! Как видите, вариантов двигателей внутреннего сгорания очень много, но если стоит затронуть классификацию ДВС, то для подробного рассмотрения всего объёма материала понадобится минимум 20-30 страниц - большой объём, не так ли? И это только классификация...

Принципиальный ДВС автомобиля НИВА

1 - Щуп для замера уровня масла в картере
2 - Шатун
3 - Маслозаборник
4 - Насос шестеренчатый
5 - Ведущая шестерня насоса
6 - Приводной вал НШ
7 - Подшипник скольжения (вкладыш)
8 - Вал коленчатый
9 - Манжета хвостовика коленчатого вала
10 - Болт для крепления шкива
11 - Шкив, служит для привода генератора, насоса водяного охлаждения
12 - Ремень клиноременной передачи
13 - Ведущая звездочка КШМ
14 - Звездочка привода НШ
15 - Генератор
16 - Лобовая часть ДВС
17 - Натяжитель цепи
18 - Вентилятор
19 - Цепь привода ГРМ
20 - Клапан впускной
21 - Клапан выпускной

22 - Звездочка распределительного вала
23 - Корпус распределительного вала
24 - Вал распределительный ГРМ
25 - Пружина клапана
26 - Крышка ГРМ
27 - Крышка заливная
28 - Толкатель
29 - Втулка клапан
30 - Головка блока цилиндров
31 - Пробка системы охлаждения
32 - Свеча зажигания
33 - Прокладка головки блока цилиндров
34 - Поршень
35 - Корпус манжеты
36 - Манжета
37 - Полукольцо от осаго смещения
38 - Крышка опоры коленчатого вала
39 - Маховик
40 - Блок цилиндров
41 - Крышка картера сцепления
42 - Поддон картера

Ни одна область деятельности несравнима с поршневыми ДВС по масштабам, количеству людей занятых в разработке, производстве и эксплуатации. В развитых странах деятельность четверти самодеятельного населения прямо или косвенно связана с поршневым двигателестроением. Двигателестроение, как исключительно наукоемкая область, определяет и стимулирует развитие науки и образования. Общая мощность поршневых двигателей внутреннего сгорания составляет 80 – 85% мощности всех энергоустановок мировой энергетики. На автомобильном, железнодорожном, водном транспорте, в сельском хозяйстве, строительстве, средствах малой механизации, ряде других областей, поршневой ДВС как источник энергии пока не имеет должной альтернативы. Мировое производство только автомобильных двигателей непрерывно увеличивается, превысив 60 миллионов единиц в год. Количество производимых в мире малоразмерных двигателей также превышает десятки миллионов в год. Даже в авиации поршневые двигатели доминируют по суммарной мощности, количеству моделей и модификаций и количеству установленных на самолеты двигателей. В мире эксплуатируется несколько сотен тысяч самолетов с поршневыми ДВС (бизнес-класса, спортивных, беспилотных и т.д.). В США на долю поршневых двигателей приходится около 70% мощности всех двигателей, установленных на гражданских летательных аппаратах.

Но со временем всё меняется и скоро мы увидим и будем эксплуатировать принципиально другие типы двигателей, которые будет иметь высокие эксплуатационные показатели, высокий КПД, простота конструкции и главное - экологичность. Да, всё верно, главным минусом двигателя внутреннего сгорания является его экологическая характеристика. Как бы не оттачивали работу ДВС, какие бы системы не внедряли, он всё равно оказывается существенное влияние на наше здоровье. Да, теперь можно с уверенностью сказать, что существующая технология моторостроения чувствует "потолок" - это такое состояние, когда та, или иная технология полностью исчерпала свои возможность, полностью выжато, всё что можно было сделать - уже сделано и с точки зрения экологии принципиально НИЧЕГО уже не изменить в существующих типах ДВС. Стоит вопрос: нужно полностью менять принцип работы двигателя, его энергоноситель (нефтяные продукты) на что-то новое, принципиально иное (). Но, к сожалению, это дело не одного дня или даже года, нужны десятилетия...

Пока ещё не одно поколение ученых и конструкторов будут исследовать и совершенствовать старую технологию постепенно подходя всё ближе и ближе к стенке, через которую уже будет невозможно перескочить (физически это не возможно). Еще очень долго ДВС будет давать работу тем, кто его производит, эксплуатирует, обслуживает и продает. Почему? Всё очень просто, но в то же время эту простую истину далеко не все понимают и принимают. Главная причина замедления внедрения принципиально иных технологий - капитализм. Да, как бы это странно не звучало, но именно капитализм, та система, которая как кажется должна быть заинтересована в новых технологиях, тормозит развитие человечества! Всё очень просто - нужно зарабатывать. Как же быть с теми нефтяными вышками, нефтезаводами и доходами?

ДВС «хоронили» неоднократно. В разное время на смену ему приходили электродвигатели на аккумуляторах, топливные элементы на водороде и многое другое. ДВС неизменно побеждал в конкурентной борьбе. И даже проблема исчерпания запасов нефти и газа - это не проблема ДВС. Существует неограниченный источник топлива для ДВС. По последним данным, нефть может восстанавливаться, а что это значит для нас?

Характеристики ДВС

При одних и тех же конструктивных параметрах у разных двигателей такие показатели, как мощность, крутящий момент и удельный расход топлива, могут отличаться. Это связано с такими особенностями, как количество клапанов на цилиндр, фазы газораспределения и т. п. Поэтому для оценки работы двигателя на разных оборотах используют характеристики — зависимость его показателей от режимов работы. Характеристики определяются опытным путем на специальных стендах, так как теоретически они рассчитываются лишь приблизительно.

Как правило, в технической документации к автомобилю приводятся внешние скоростные характеристики двигателя (рисунок слева), определяющие зависимость мощности, крутящего момента и удельного расхода топлива от числа оборотов коленвала при полной подаче топлива. Они дают представление о максимальных показателях двигателя.

Показатели двигателя (упрощенно) изменяются по следующим причинам. С увеличением числа оборотов коленвала растет крутящий момент благодаря тому, что в цилиндры поступает больше топлива. Примерно на средних оборотах он достигает своего максимума, а затем начинает снижаться. Это происходит из-за того, что с увеличением скорости вращения коленвала начинают играть существенную роль инерционные силы, силы трения, аэродинамическое сопротивление впускных трубопроводов, ухудшающее наполнение цилиндров свежим зарядом топливо-воздушной смеси, и т. п.

Быстрый рост крутящего момента двигателя указывает на хорошую динамику разгона автомобиля благодаря интенсивному увеличению силы тяги на колесах. Чем дольше величина момента находится в районе своего максимума и не снижается, тем лучше. Такой двигатель более приспособлен к изменению дорожных условий и реже придется переключать передачи.

Мощность растет вместе с крутящим моментом и даже, когда он начинает снижаться, продолжает увеличиваться благодаря повышению оборотов. После достижения максимума мощность начинает снижаться по той же причине, по которой уменьшается крутящий момент. Обороты несколько выше максимальной мощности ограничивают регулирующими устройствами, так как в этом режиме значительная часть топлива расходуется не на совершение полезной работы, а на преодоление сил инерции и трения в двигателе. Максимальная мощность определяет максимальную скорость автомобиля. В этом режиме автомобиль не разгоняется и двигатель работает только на преодоление сил сопротивления движению — сопротивления воздуха, сопротивления качению и т. п.

Величина удельного расхода топлива также меняется в зависимости от оборотов коленвала, что видно на характеристике. Удельный расход топлива должен находиться как можно дольше вблизи минимума; это указывает на хорошую экономичность двигателя. Минимальный удельный расход, как правило, достигается чуть ниже средних оборотов, на которых в основном и эксплуатируется автомобиль при движении в городе.

Пунктирной линией на графике выше показаны более оптимальные характеристики двигателя.

Двигатель внутреннего сгорания - это двигатель, в котором топливо сгорает непосредственно в рабочей камере (внутри ) двигателя. ДВС преобразует тепловую энергию от сгорания топлива в механическую работу.

По сравнению с двигателями внешнего сгорания ДВС:

  • не имеет дополнительных элементов теплопередачи - топливо само образует рабочее тело;
  • компактнее, так как не имеет целого ряда дополнительных агрегатов;
  • легче;
  • экономичнее;
  • потребляет топливо, обладающее весьма жёстко заданными параметрами (испаряемостью, температурой вспышки паров, плотностью, теплотой сгорания, октановым или цетановым числом), так как от этих свойств зависит сама работоспособность ДВС.

Видео: Принцип работы двигателя. 4-х тактный двигатель внутреннего сгорания (ДВС) в 3D. Принцип работы двигателя внутреннего сгорания. Из истории научных открытий Рудольф Дизель и дизельный двигатель. Устройство двигателя автомобиля. Двигатель внутреннего сгорания (ДВС) в 3D. Принцип работы двигателя внутреннего сгорания. Работа двс в разрезе 3D

Схема: двухтактный двигатель внутреннего сгорания с резонаторной трубой

Четырёхтактный рядный четырёхцилиндровый двигатель внутреннего сгорания

История создания

В 1807 г. французско-швейцарский изобретатель Франсуа Исаак де Риваз построил первый поршневой двигатель, называемый часто двигателем де Риваза . Двигатель работал на газообразном водороде, имея элементы конструкции, с тех пор вошедшие в последующие прототипы ДВС: поршневую группу и искровое зажигание. Кривошипно-шатунного механизма в конструкции двигателя ещё не было.

Газовый двигатель Ленуара, 1860 года.

Первый практически пригодный двухтактный газовый ДВС был сконструирован французским механиком Этьеном Ленуаром в 1860 году. Мощность составляла 8,8 кВт (11,97 л. с.). Двигатель представлял собой одноцилиндровую горизонтальную машину двойного действия, работавшую на смеси воздуха и светильного газа с электрическим искровым зажиганием от постороннего источника. В конструкции двигателя появился кривошипно-шатунный механизм.

КПД двигателя не превышал 4,65 %. Несмотря на недостатки, двигатель Ленуара получил некоторое распространение. Использовался как лодочный двигатель.

Познакомившись с двигателем Ленуара, осенью 1860 года выдающийся немецкий конструктор Николаус Аугуст Отто с братом построили копию газового двигателя Ленуара и в январе 1861 года подали заявку на патент на двигатель с жидким топливом на основе газового двигателя Ленуара в Министерство коммерции Пруссии, но заявка была отклонена. В 1863 году создал двухтактный атмосферный двигатель внутреннего сгорания. Двигатель имел вертикальное расположение цилиндра, зажигание открытым пламенем и КПД до 15 %. Вытеснил двигатель Ленуара.

Четырёхтактный двигатель Отто 1876 года.

В 1876 г. Николаус Август Отто построил более совершенный четырёхтактный газовый двигатель внутреннего сгорания.

В 1880-х годах Огнеслав Степанович Костович в России построил первый бензиновый карбюраторный двигатель.

Мотоцикл Даймлера с ДВС 1885 года

В 1885 году немецкие инженеры Готтлиб Даймлер и Вильгельм Майбах разработали лёгкий бензиновый карбюраторный двигатель. Даймлер и Майбах использовали его для создания первого мотоцикла в 1885, а в 1886 году - на первом автомобиле.

Немецкий инженер Рудольф Дизель стремился повысить эффективность двигателя внутреннего сгорания и в 1897 предложил двигатель с воспламенением от сжатия. На заводе «Людвиг Нобель» Эммануила Людвиговича Нобеля в Петербурге в 1898-1899 Густав Васильевич Тринклер усовершенствовал этот двигатель, использовав бескомпрессорное распыливание топлива, что позволило применить в качестве топлива нефть. В результате бескомпрессорный двигатель внутреннего сгорания высокого сжатия с самовоспламенением стал наиболее экономичным стационарным тепловым двигателем. В 1899 на заводе «Людвиг Нобель» построили первый дизель в России и развернули массовое производство дизелей. Этот первый дизель имел мощность 20 л. с., один цилиндр диаметром 260 мм, ход поршня 410 мм и частоту вращения 180 об/мин. В Европе дизельный двигатель, усовершенствованный Густавом Васильевичем Тринклером, получил название «русский дизель» или «Тринклер-мотор». На всемирной выставке в Париже в 1900 двигатель Дизеля получил главный приз. В 1902 Коломенский завод купил у Эммануила Людвиговича Нобеля лицензию на производство дизелей и вскоре наладил массовое производство.

В 1908 году главный инженер Коломенского завода Р. А. Корейво строит и патентует во Франции двухтактный дизель с противоположно-движущимися поршнями и двумя коленвалами. Дизели Корейво стали широко использоваться на теплоходах Коломенского завода. Выпускались они и на заводах Нобелей.

В 1896 году Чарльз В. Харт и Чарльз Парр разработали двухцилиндровый бензиновый двигатель. В 1903 году их фирма построила 15 тракторов. Их шеститонный #3 является старейшим трактором с двигателем внутреннего сгорания в Соединенных Штатах и хранится в Смитсоновском Национальном музее американской истории в Вашингтоне, округ Колумбия. Бензиновый двухцилиндровый двигатель имел совершенно ненадёжную систему зажигания и мощность 30 л. с. на холостом ходу и 18 л. с. под нагрузкой .

Дэн Элбон с его прототипом сельскохозяйственного трактора Ivel

Первым практически пригодным трактором с двигателем внутреннего сгорания был американский трёхколёсный трактор lvel Дэна Элборна 1902 года. Было построено около 500 таких лёгких и мощных машин.

Двигатель, использованный братьями Райт в 1910 году

В 1903 году состоялся полёт первого самолёта братьев Орвила и Уилбура Райт. Двигатель самолёта изготовил механик Чарли Тэйлор. Основные части двигателя сделали из алюминия. Двигатель Райт-Тэйлора был примитивным вариантом бензинового инжекторного двигателя.

На первом в мире теплоходе - нефтеналивной барже «Вандал», построенной в 1903 году в России на Сормовском заводе для «Товарищества Братьев Нобель», были установлены три четырёхтактных двигателя Дизеля мощностью по 120 л. с. каждый. В 1904 году был построен теплоход «Сармат».

В 1924 по проекту Якова Модестовича Гаккеля на Балтийском судостроительном заводе в Ленинграде был создан тепловоз Ю Э 2 (Щ ЭЛ 1).

Практически одновременно в Германии по заказу СССР и по проекту профессора Ю. В. Ломоносова по личному указанию В. И. Ленина в 1924 году на немецком заводе Эсслинген (бывш. Кесслер) близ Штутгарта построен тепловоз Ээл2 (первоначально Юэ001).

Виды двигателей внутреннего сгорания

Поршневой ДВС

Роторный ДВС

Газотурбинный ДВС

  • Поршневые двигатели - камерой сгорания служит цилиндр, возвратно-поступательное движение поршня с помощью кривошипно-шатунного механизма преобразуется во вращение вала.
  • Газовая турбина - преобразование энергии осуществляется ротором с клиновидными лопатками.
  • Роторно-поршневые двигатели - в них преобразование энергии осуществляется за счёт вращения рабочими газами ротора специального профиля (двигатель Ванкеля).

ДВС классифицируют:

  • по назначению - на транспортные, стационарные и специальные.
  • по роду применяемого топлива - лёгкие жидкие (бензин, газ), тяжёлые жидкие (дизельное топливо, судовые мазуты).
  • по способу образования горючей смеси - внешнее (карбюратор) и внутреннее (в цилиндре ДВС).
  • по объёму рабочих полостей и весогабаритным характеристикам - лёгкие, средние, тяжёлые, специальные.

Помимо приведённых выше общих для всех ДВС критериев классификации существуют критерии, по которым классифицируются отдельные типы двигателей. Так, поршневые двигатели можно классифицировать по количеству и расположению цилиндров, коленчатых и распределительных валов, по типу охлаждения, по наличию или отсутствию крейцкопфа, наддува (и по типу наддува), по способу смесеобразования и по типу зажигания, по количеству карбюраторов, по типу газораспределительного механизма, по направлению и частоте вращения коленчатого вала, по отношению диаметра цилиндра к ходу поршня, по степени быстроходности (средней скорости поршня).

Октановое число топлива

Энергия передаётся на коленчатый вал двигателя от расширяющихся газов во время рабочего хода. Сжатие топливо-воздушной смеси до объёма камеры сгорания повышает эффективность работы двигателя и увеличивает его КПД, но увеличение степени сжатия также увеличивает вызываемое сжатием нагревание рабочей смеси согласно закону Шарля.

Если топливо легковоспламеняемое, вспышка происходит до достижения поршнем ВМТ. Это, в свою очередь, заставит поршень провернуть коленвал в обратном направлении - такое явление называют обратной вспышкой.

Октановое число является мерой процентного содержания изооктана в гептан-октановой смеси и отражает способность топлива противостоять самовоспламенению под воздействием температуры. Топливо с более высокими октановыми числами позволяют двигателю с высокой степенью сжатия работать без склонности к самовоспламенению и детонации и, стало быть, иметь более высокую степень сжатия и более высокий КПД.

Работа дизельных двигателей обеспечивается самовоспламенением от сжатия в цилиндре чистого воздуха или бедной газовоздушной смеси, неспособной к самостоятельному горению (газодизель) и отсутствия в заряде топлива до последнего момента.

Отношение диаметра цилиндра к ходу поршня

Одним из основополагающих конструктивных параметров ДВС является отношение хода поршня к диаметру цилиндра (или наоборот). Для более быстроходных бензиновых двигателей это отношение близко к 1, на дизельных моторах ход поршня, как правило, тем больше диаметра цилиндра, чем больше двигатель. Оптимальным с точки зрения газодинамики и охлаждения поршня является соотношение 1: 1. Чем больше ход поршня, тем больший крутящий момент развивает двигатель и тем ниже его рабочий диапазон оборотов. Наоборот, чем больше диаметр цилиндра, тем выше рабочие обороты двигателя и тем ниже его крутящий момент на низких оборотах. Как правило, короткоходные ДВС (особенно гоночные) имеют больший крутящий момент на единицу рабочего объема, но на относительно высоких оборотах (больше 5000 об/мин.). При большем диаметре цилиндра/поршня сложнее обеспечить должный теплоотвод от донышка поршня ввиду его больших линейных размеров, но при высоких рабочих оборотах скорость поршня в цилиндре не превышает скорости поршня более длинноходного на его рабочих оборотах.

Бензиновые

Бензиновые карбюраторные

Смесь топлива с воздухом готовится в карбюраторе, далее смесь подаётся в цилиндр, сжимается, а затем поджигается при помощи искры, проскакивающей между электродами свечи. Основная характерная особенность топливо-воздушной смеси в этом случае - гомогенность.

Бензиновые инжекторные

Также, существует способ смесеобразования путём впрыска бензина во впускной коллектор или непосредственно в цилиндр при помощи распыляющих форсунок (инжектор). Существуют системы одноточечного (моновпрыск), и распределённого впрыска различных механических и электронных систем. В механических системах впрыска дозация топлива осуществляется плунжерно-рычажным механизмом с возможностью электронной корректировки состава смеси. В электронных системах смесеобразование осуществляется с помощью электронного блока управления (ЭБУ), управляющего электрическими бензиновыми форсунками.

Дизельные, с воспламенением от сжатия

Дизельный двигатель характеризуется воспламенением топлива без использования свечи зажигания. В разогретый в цилиндре воздух от адиабатического сжатия (до температуры, превышающей температуру воспламенения топлива) через форсунку впрыскивается порция топлива. В процессе впрыскивания топливной смеси происходит его распыление, а затем вокруг отдельных капель топливной смеси возникают очаги сгорания, по мере впрыскивания топливная смесь сгорает в виде факела.

Так как дизельные двигатели не подвержены явлению детонации, характерному для двигателей с принудительным воспламенением, в них допустимо использование более высоких степеней сжатия (до 26), что, в сочетании с длительным горением, обеспечивающим постоянное давление рабочего тела, благотворно сказывается на КПД данного типа двигателей, который может превышать 50 % в случае с крупными судовыми двигателями.

Дизельные двигатели являются менее быстроходными и характеризуются большим крутящим моментом на валу. Также некоторые крупные дизельные двигатели приспособлены для работы на тяжёлых топливах, например, мазутах. Запуск крупных дизельных двигателей осуществляется, как правило, за счёт пневматической схемы с запасом сжатого воздуха, либо, в случае с дизель-генераторными установками, от присоединённого электрического генератора, который при запуске выполняет роль стартера.

Вопреки расхожему мнению, современные двигатели, традиционно называемые дизельными, работают не по циклу Дизеля, а по циклу Тринклера - Сабатэ со смешанным подводом теплоты.

Недостатки дизельных двигателей обусловлены особенностями рабочего цикла - более высокой механической напряжённостью, требующей повышенной прочности конструкции и, как следствие, увеличения её габаритов, веса и увеличения стоимости за счёт усложнённой конструкции и использования более дорогих материалов. Также дизельные двигатели за счет гетерогенного сгорания характеризуются неизбежными выбросами сажи и повышенным содержанием оксидов азота в выхлопных газах.

Газовые двигатели

Двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях:

  • смеси сжиженных газов - хранятся в баллоне под давлением насыщенных паров (до 16 атм). Испарённая в испарителе жидкая фаза или паровая фаза смеси ступенчато теряет давление в газовом редукторе до близкого атмосферному, и всасывается двигателем во впускной коллектор через воздушно-газовый смеситель или впрыскивается во впускной коллектор посредством электрических форсунок. Зажигание осуществляется при помощи искры, проскакивающей между электродами свечи.
  • сжатые природные газы - хранятся в баллоне под давлением 150-200 атм. Устройство систем питания аналогично системам питания сжиженным газом, отличие - отсутствие испарителя.
  • генераторный газ - газ, полученный превращением твёрдого топлива в газообразное. В качестве твёрдого топлива используются:
    • уголь
    • древесина

Газодизельные

Основная порция топлива приготавливается, как в одной из разновидностей газовых двигателей, но зажигается не электрической свечой, а запальной порцией дизтоплива, впрыскиваемого в цилиндр аналогично дизельному двигателю.

Роторно-поршневой

Схема цикла двигателя Ванкеля: впуск (intake), сжатие (compression), рабочий ход (ignition), выпуск (exhaust); A - треугольный ротор (поршень), B - вал.

Предложен изобретателем Ванкелем в начале XX века. Основа двигателя - треугольный ротор (поршень), вращающийся в камере особой 8-образной формы, исполняющий функции поршня, коленвала и газораспределителя. Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. За один оборот двигатель выполняет три полных рабочих цикла, что эквивалентно работе шестицилиндрового поршневого двигателя. Строился серийно фирмой НСУ в Германии (автомобиль RO-80), ВАЗом в СССР (ВАЗ-21018 «Жигули», ВАЗ-416, ВАЗ-426, ВАЗ-526), Маздой в Японии (Mazda RX-7, Mazda RX-8). При своей принципиальной простоте имеет ряд существенных конструктивных сложностей, делающих его широкое внедрение весьма затруднительным. Основные трудности связаны с созданием долговечных работоспособных уплотнений между ротором и камерой и с построением системы смазки.

В Германии в конце 70-х годов XX века существовал анекдот: «Продам НСУ, дам в придачу два колеса, фару и 18 запасных моторов в хорошем состоянии».

  • RCV - двигатель внутреннего сгорания, система газораспределения которого реализована за счёт движения поршня, который совершает возвратно-поступательные движения, попеременно проходя впускной и выпускной патрубок.

Комбинированный двигатель внутреннего сгорания

  • - двигатель внутреннего сгорания, представляющий собой комбинацию из поршневой и лопаточной машин (турбина, компрессор), в котором обе машины в соотносимой мере участвуют в осуществлении рабочего процесса. Примером комбинированного ДВС служит поршневой двигатель с газотурбинным наддувом (турбонаддув). Большой вклад в теорию комбинированных двигателей внёс советский инженер, профессор А. Н. Шелест.

Турбонагнетание

Наиболее распространённым типом комбинированных двигателей является поршневой с турбонагнетателем.
Турбонагнетатель или турбокомпрессор (ТК, ТН) - это нагнетатель, который приводится в движение выхлопными газами. Получил своё название от слова «турбина» (фр. turbine от лат. turbo - вихрь, вращение). Это устройство состоит из двух частей: роторного колеса турбины, приводимого в движение выхлопными газами, и центробежного компрессора, закреплённых на противоположных концах общего вала.

Струя рабочего тела (в данном случае, выхлопных газов) воздействует на лопатки, закреплённые по окружности ротора, и приводит их в движение вместе с валом, который изготовляется единым целым с ротором турбины из сплава, близкого к легированной стали. На валу, помимо ротора турбины, закреплён ротор компрессора, изготовленный из алюминиевых сплавов, который при вращении вала позволяет нагнетать воздух в цилиндры ДВС. Таким образом, в результате действия выхлопных газов на лопатки турбины одновременно раскручиваются ротор турбины, вал и ротор компрессора. Применение турбокомпрессора совместно с промежуточным охладителем воздуха (интеркулером) позволяет обеспечивать подачу более плотного воздуха в цилиндры ДВС (в современных турбированных двигателях используется именно такая схема). Часто при применении в двигателе турбокомпрессора говорят о турбине, не упоминая компрессора. Турбокомпрессор - это одно целое. Нельзя использовать энергию выхлопных газов для подачи воздушной смеси под давлением в цилиндры ДВС при помощи только турбины. Нагнетание обеспечивает именно та часть турбокомпрессора, которая именуется компрессором.

На холостом ходу, при небольших оборотах, турбокомпрессор вырабатывает небольшую мощность и приводится в движение малым количеством выхлопных газов. В этом случае турбонагнетатель малоэффективен, и двигатель работает примерно так же, как без нагнетания. Когда от двигателя требуется намного большая выходная мощность, то его обороты, а также зазор дросселя, увеличиваются. Пока количества выхлопных газов достаточно для вращения турбины, по впускному трубопроводу подаётся намного больше воздуха.

Турбонагнетание позволяет двигателю работать более эффективно, поскольку тому что турбонагнетатель использует энергию выхлопных газов, которая, в противном случае, была бы (большей частью) потеряна.

Однако существует технологическое ограничение, известное как «турбояма» («турбозадержка») (за исключением моторов с двумя турбокомпрессорами - маленьким и большим, когда на малых оборотах работает маленький ТК, а на больших - большой, совместно обеспечивая подачу необходимого количества воздушной смеси в цилиндры или при использованием турбины с изменяемой геометрией, в автоспорте также применяется принудительный разгон турбины с помощью системы рекуперации энергии ). Мощность двигателя увеличивается не мгновенно из-за того, что на изменение частоты вращения двигателя, обладающего некоторой инерцией, будет затрачено определённое время, а также из-за того, что чем больше масса турбины, тем больше времени потребуется на её раскручивание и создание давления, достаточного для увеличения мощности двигателя. Кроме того, повышенное выпускное давление приводит к тому, что выхлопные газы передают часть своего тепла механическим частям двигателя (эта проблема частично решается заводами-изготовителями японских и корейских ДВС путём установки системы дополнительного охлаждения турбокомпрессора антифризом).

Циклы работы поршневых ДВС

Двухтактный цикл

Схема работы четырёхтактного двигателя, цикл Отто
1. впуск
2. сжатие
3. рабочий ход
4. выпуск

Поршневые двигатели внутреннего сгорания классифицируются по количеству тактов в рабочем цикле на двухтактные и четырёхтактные.

Рабочий цикл четырёхтактных двигателей внутреннего сгорания занимает два полных оборота кривошипа или 720 градусов поворота коленчатого вала (ПКВ), состоящий из четырёх отдельных тактов:

  1. впуска,
  2. сжатия заряда,
  3. рабочего хода и
  4. выпуска (выхлопа).

Изменение рабочих тактов обеспечивается специальным газораспределительным механизмом, чаще всего он представлен одним или двумя распределительными валами, системой толкателей и клапанами, непосредственно обеспечивающими смену фазы. Некоторые двигатели внутреннего сгорания использовали для этой цели золотниковые гильзы (Рикардо), имеющие впускные и/или выхлопные окна. Сообщение полости цилиндра с коллекторами в этом случае обеспечивалось радиальным и вращательным движениями золотниковой гильзы, окнами открывающей нужный канал. Ввиду особенностей газодинамики - инерционности газов, времени возникновения газового ветра такты впуска, рабочего хода и выпуска в реальном четырёхтактном цикле перекрываются, это называется перекрытием фаз газораспределения . Чем выше рабочие обороты двигателя, тем больше перекрытие фаз и чем оно больше, тем меньше крутящий момент двигателя внутреннего сгорания на низких оборотах. Поэтому в современных двигателях внутреннего сгорания всё шире используются устройства, позволяющие изменять фазы газораспределения в процессе работы. Особенно пригодны для этой цели двигатели с электромагнитным управлением клапанами (BMW, Mazda). Имеются также двигатели с переменной степенью сжатия (SAAB AB), обладающие большей гибкостью характеристики.

Двухтактные двигатели имеют множество вариантов компоновки и большое разнообразие конструктивных систем. Основной принцип любого двухтактного двигателя - исполнение поршнем функций элемента газораспределения. Рабочий цикл складывается, строго говоря, из трёх тактов: рабочего хода, длящегося от верхней мёртвой точки (ВМТ ) до 20-30 градусов до нижней мёртвой точки (НМТ ), продувки, фактически совмещающей впуск и выхлоп, и сжатия, длящегося от 20-30 градусов после НМТ до ВМТ. Продувка, с точки зрения газодинамики, слабое звено двухтактного цикла. С одной стороны, невозможно обеспечить полное разделение свежего заряда и выхлопных газов, поэтому неизбежны либо потери свежей смеси, буквально вылетающей в выхлопную трубу (если двигатель внутреннего сгорания - дизель, речь идёт о потере воздуха), с другой стороны, рабочий ход длится не половину оборота, а меньше, что само по себе снижает КПД. В то же время длительность чрезвычайно важного процесса газообмена, в четырёхтактном двигателе занимающего половину рабочего цикла, не может быть увеличена. Двухтактные двигатели могут вообще не иметь системы газораспределения. Однако, если речь не идёт об упрощённых дешёвых двигателях, двухтактный двигатель сложнее и дороже за счёт обязательного применения воздуходувки или системы наддува, повышенная теплонапряжённость ЦПГ требует более дорогих материалов для поршней, колец, втулок цилиндров. Исполнение поршнем функций элемента газораспределения обязывает иметь его высоту не менее ход поршня + высота продувочных окон, что некритично в мопеде, но существенно утяжеляет поршень уже при относительно небольших мощностях. Когда же мощность измеряется сотнями лошадиных сил, увеличение массы поршня становится очень серьёзным фактором. Введение распределительных гильз с вертикальным ходом в двигателях Рикардо было попыткой сделать возможным уменьшение габаритов и массы поршня. Система оказалась сложной и дорогой в исполнении, кроме авиации, такие двигатели нигде больше не использовались. Выхлопные клапаны (при прямоточной клапанной продувке) имеют вдвое большую теплонапряжённость в сравнении с выхлопными клапанами четырёхтактных двигателей и худшие условия для теплоотвода, а их сёдла имеют более длительный прямой контакт с выхлопными газами.

Самой простой с точки зрения порядка работы и самой сложной с точки зрения конструкции является система Корейво, представленная в СССР и в России, в основном, тепловозными дизелями серий Д100 и танковыми дизелями ХЗТМ. Такой двигатель представляет собой симметричную двухвальную систему с расходящимися поршнями, каждый из которых связан со своим коленвалом. Таким образом, этот двигатель имеет два коленвала, механически синхронизированные; тот, который связан с выхлопными поршнями, опережает впускной на 20-30 градусов. За счёт этого опережения улучшается качество продувки, которая в этом случае является прямоточной, и улучшается наполнение цилиндра, так как в конце продувки выхлопные окна уже закрыты. В 30х - 40х годах XX века были предложены схемы с парами расходящихся поршней - ромбовидная, треугольная; существовали авиационные дизели с тремя звездообразно расходящимися поршнями, из которых два были впускными и один - выхлопным. В 20-х годах Юнкерс предложил одновальную систему с длинными шатунами, связанными с пальцами верхних поршней специальными коромыслами; верхний поршень передавал усилия на коленвал парой длинных шатунов, и на один цилиндр приходилось три колена вала. На коромыслах стояли также квадратные поршни продувочных полостей. Двухтактные двигатели с расходящимися поршнями любой системы имеют, в основном, два недостатка: во-первых, они весьма сложны и габаритны, во-вторых, выхлопные поршни и гильзы в зоне выхлопных окон имеют значительную температурную напряжённость и склонность к перегреву. Кольца выхлопных поршней также являются термически нагруженными, склонны к закоксовыванию и потере упругости. Эти особенности делают конструктивное исполнение таких двигателей нетривиальной задачей.

Двигатели с прямоточной клапанной продувкой оснащены распределительным валом и выхлопными клапанами. Это значительно снижает требования к материалам и исполнению ЦПГ. Впуск осуществляется через окна в гильзе цилиндра, открываемые поршнем. Именно так компонуется большинство современных двухтактных дизелей. Зона окон и гильза в нижней части во многих случаях охлаждаются наддувочным воздухом.

В случаях, когда одним из основных требований к двигателю является его удешевление, используются разные виды кривошипно-камерной контурной оконно-оконной продувки - петлевая, возвратно-петлевая (дефлекторная) в разнообразных модификациях. Для улучшения параметров двигателя применяются разнообразные конструктивные приёмы - изменяемая длина впускного и выхлопного каналов, может варьироваться количество и расположение перепускных каналов, используются золотники, вращающиеся отсекатели газов, гильзы и шторки, изменяющие высоту окон (и, соответственно, моменты начала впуска и выхлопа). Большинство таких двигателей имеет воздушное пассивное охлаждение. Их недостатки - относительно невысокое качество газообмена и потери горючей смеси при продувке, при наличии нескольких цилиндров секции кривошипных камер приходится разделять и герметизировать, усложняется и удорожается конструкция коленвала.

Дополнительные агрегаты, требующиеся для ДВС

Недостатком двигателя внутреннего сгорания является то, что он развивает наивысшую мощность только в узком диапазоне оборотов. Поэтому неотъемлемым атрибутом двигателя внутреннего сгорания является трансмиссия. Лишь в отдельных случаях (например, в самолётах) можно обойтись без сложной трансмиссии. Постепенно завоёвывает мир идея гибридного автомобиля, в котором мотор всегда работает в оптимальном режиме.

Кроме того, двигателю внутреннего сгорания необходимы система питания (для подачи топлива и воздуха - приготовления топливо-воздушной смеси), выхлопная система (для отвода выхлопных газов), также не обойтись без системы смазки (предназначена для уменьшения сил трения в механизмах двигателя, защиты деталей двигателя от коррозии, а также совместно с системой охлаждения для поддержания оптимального теплового режима), системы охлаждения (для поддержания оптимального теплового режима двигателя), система запуска (применяются способы запуска: электростартерный, с помощью вспомогательного пускового двигателя, пневматический, с помощью мускульной силы человека), система зажигания (для воспламенения топливо-воздушной смеси, применяется у двигателей с принудительным воспламенением).

Технологические особенности изготовления

К обработке отверстий в различных деталях, в том числе в деталях двигателя (отверстий головки блоков цилиндров (ГБЦ), гильз цилиндров, отверстий кривошипной и поршневой головок шатунов, отверстий шестерён) и т. д., предъявляются высокие требования. Используются высокоточные технологии шлифования и хонингования.

Примечания

  1. Hart Parr #3 Tractor на сайте Национального музея американской истории (англ.)
  2. Андрей Лось. Red Bull Racing и Renault о новых силовых установках. F1News.Ru (25 марта 2014).

Новое на сайте

>

Самое популярное