Домой Коробка передач Поршневые типы двигателей внутреннего сгорания. Роторно — поршневой двигатель (двигатель Ванкеля) Современное состояние роторно-поршневого двигателя

Поршневые типы двигателей внутреннего сгорания. Роторно — поршневой двигатель (двигатель Ванкеля) Современное состояние роторно-поршневого двигателя

Как было выше сказано, тепловое расширение применяется в ДВС. Но каким образом оно применяется и какую функцию выполняет мы рассмотрим на примере работы поршневого ДВС. Двигателем называется энергосиловая машина, преобразующая какую-либо энергию в механическую работу. Двигатели, в которых механическая работа создается в результате преобразования тепловой энергии, называются тепловыми. Тепловая энергия получается при сжигании какого-либо топлива. Тепловой двигатель, в котором часть химической энергии топлива, сгорающего в рабочей полости, преобразуется в механическую энергию, называется поршневым двигателем внутреннего сгорания. (Советский энциклопедический словарь)

3. 1. Классификация двс

Как было выше сказано, в качестве энергетических установок автомобилей наибольшее распространение поучили ДВС, в которых процесс сгорания топлива с выделением теплоты и превращением ее в механическую работу происходит непосредственно в цилиндрах. Но в большинстве современных автомобилей установлены двигатели внутреннего сгорания, которые классифицируются по различным признакам: По способу смесеобразования - двигатели с внешним смесеобразованием, у которых горючая смесь приготовляется вне цилиндров (карбюраторные и газовые), и двигатели с внутренним смесеобразованием (рабочая смесь образуется внутри цилиндров) -дизели; По способу осуществления рабочего цикла - четырехтактные и двухтактные; По числу цилиндров - одноцилиндровые, двухцилиндровые и многоцилиндровые; По расположению цилиндров - двигатели с вертикальным или наклонным расположением цилиндров в один ряд, V-образные с расположением цилиндров под углом (при расположении цилиндров под углом 180 двигатель называется двигателем с противолежащими цилиндрами, или оппозитным); По способу охлаждения - на двигатели с жидкостным или воздушным охлаждением; По виду применяемого топлива - бензиновые, дизельные, газовые и многотопливные;По степени сжатия. В зависимости от степени сжатия различают

двигатели высокого (E=12...18) и низкого (E=4...9) сжатия; По способу наполнения цилиндра свежим зарядом:а) двигатели без наддува, у которых впуск воздуха или горючей смеси осуществляется за счет разряжения в цилиндре при всасывающем ходе поршня;) двигатели с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым компрессором, с целью увеличения заряда и получения повышенной мощности двигателя; По частоте вращения: тихоходные, повышенной частоты вращения, быстроходные;По назначению различают двигатели стационарные, авто тракторные, судовые, тепловозные, авиационные и др.

3.2. Основы устройства поршневых двс

Поршневые ДВС состоят из механизмов и систем, выполняющих заданные им функции и взаимодействующих между собой. Основными частями такого двигателя являются кривошипно-шатунный механизм и газораспределительный механизм, а также системы питания, охлаждения, зажигания и смазочная система.

Кривошипно-шатунный механизм преобразует прямолинейное возвратно-поступательное движение поршня во вращательное движение коленчатого вала.

Механизм газораспределения обеспечивает своевременный впуск горючей смеси в цилиндр и удаление из него продуктов сгорания.

Система питания предназначена для приготовления и подачи горючей смеси в цилиндр, а также для отвода продуктов сгорания.

Смазочная система служит для подачи масла к взаимодействующим деталям с целью уменьшения силы трения и частичного их охлаждения, наряду с этим циркуляция масла приводит к смыванию нагара и удалению продуктов изнашивания.

Система охлаждения поддерживает нормальный температурный режим работы двигателя, обеспечивая отвод теплоты от сильно нагревающихся при сгорании рабочей смеси деталей цилиндров поршневой группы и клапанного механизма.

Система зажигания предназначена для воспламенения рабочей смеси в цилиндре двигателя.

Итак, четырехтактный поршневой двигатель состоит из цилиндра и картера, который снизу закрыт поддоном. Внутри цилиндра перемещается поршень с компрессионными (уплотнительными) кольцами, имеющий форму стакана с днищем в верхней части. Поршень через поршневой палец и шатун связан с коленчатым валом, который вращается в коренных подшипниках, расположенных в картере. Коленчатый вал состоит из коренных шеек, щек и шатунной шейки. Цилиндр,поршень, шатун и коленчатый вал составляют так называемый кривошипно-шатунный механизм. Сверху цилиндр накрыт головкой с клапанами, открытие и закрытие которых строго согласовано с вращением коленчатого вала, а следовательно, и с перемещением поршня.

Перемещение поршня ограничивается двумя крайними положениями, при которых его скорость равна нулю. Крайнее верхнее положение поршня называется верхней мертвой точкой (ВМТ), крайнее нижнее его положение - нижняя мертвая точка (НМТ) .

Безостановочное движение поршня через мертвые точки обеспечивается маховиком, имеющим форму диска с массивным ободом. Расстояние, проходимое поршнем от ВМТ до НМТ, называется ходом поршня S, который равен удвоенному радиусу R кривошипа: S=2R.

Пространство над днищем поршня при нахождении его в ВМТ называется камерой сгорания; ее объем обозначается через Vс; пространство цилиндра между двумя мертвыми точками (НМТ и ВМТ) называется его рабочим объемом и обозначается Vh. Сумма объема камеры сгорания Vс и рабочего объема Vh составляет полный объем цилиндра Vа: Vа=Vс+Vh. Рабочий объем цилиндра (его измеряют в кубических сантиметрах или метрах): Vh=пД^3*S/4, где Д - диаметр цилиндра. Сумму всех рабочих объемов цилиндров многоцилиндрового двигателя называют рабочим объемом двигателя, его определяют по формуле: Vр=(пД^2*S)/4*i, где i - число цилиндров. Отношение полного объема цилиндра Va к объему камеры сгорания Vc называется степенью сжатия: E=(Vc+Vh)Vc=Va/Vc=Vh/Vc+1. Степень сжатия является важным параметром двигателей внутреннего сгорания, т.к. сильно влияет на его экономичность и мощность.

Большинство автомобилей заставляет перемещаться поршневой двигатель внутреннего сгорания (сокращённо ДВС) с кривошипно-шатунным механизмом. Такая конструкция получила массовое распространение в силу малой стоимости и технологичности производства, сравнительно небольших габаритов и веса.

По виду применяемого топлива ДВС можно разделить на бензиновые и дизельные. Надо сказать, что бензиновые двигатели великолепно работают на . Такое деление непосредственно сказывается на конструкции двигателя.

Как устроен поршневой двигатель внутреннего сгорания

Основа его конструкции — блок цилиндров. Это корпус, отлитый из чугуна, алюминиевого или иногда магниевого сплава. Большинство механизмов и деталей других систем двигателя крепятся именно к блоку цилиндров, или располагаются внутри его.

Другая крупная деталь двигателя, это его головка. Она находится в верхней части блока цилиндров. В головке также располагаются детали систем двигателя.

Снизу к блоку цилиндра крепится поддон. Если эта деталь воспринимает нагрузки при работе двигателя, её часто называют поддоном картера, или картером.

Все системы двигателя

  1. кривошипно-шатунный механизм;
  2. механизм газораспределения;
  3. система питания;
  4. система охлаждения;
  5. система смазки;
  6. система зажигания;
  7. система управления двигателем.

Кривошипно-шатунный механизм состоит из поршня, гильзы цилиндра, шатуна и коленчатого вала.

Кривошипно-шатунный механизм:
1. Расширитель маслосъёмного кольца. 2. Кольцо поршневое маслосъёмное. 3. Кольцо компрессионное, третье. 4. Кольцо компрессионное, второе. 5. Кольцо компрессионное, верхнее. 6. Поршень. 7. Кольцо стопорное. 8. Палец поршневой. 9. Втулка шатуна. 10. Шатун. 11. Крышка шатуна. 12. Вкладыш нижней головки шатуна. 13. Болт крышки шатуна, короткий. 14. Болт крышки шатуна, длинный. 15. Шестерня ведущая. 16. Заглушка масляного канала шатунной шейки. 17. Вкладыш подшипника коленчатого вала, верхний. 18. Венец зубчатый. 19. Болты. 20. Маховик. 21. Штифты. 22. Болты. 23. Маслоотражатель, задний. 24. Крышка заднего подшипника коленчатого вала. 25. Штифты. 26. Полукольцо упорного подшипника. 27. Вкладыш подшипника коленчатого вала, нижний. 28. Противовес коленчатого вала. 29. Винт. 30. Крышка подшипника коленчатого вала. 31. Болт стяжной. 32. Болт крепления крышки подшипника. 33. Вал коленчатый. 34. Противовес, передний. 35. Маслоотрожатель, передний. 36. Гайка замковая. 37. Шкив. 38. Болты.

Поршень расположен внутри гильзы цилиндра. При помощи поршневого пальца он соединен с шатуном, нижняя головка которого крепится к шатунной шейке коленчатого вала. Гильза цилиндра представляет собой отверстие в блоке, или чугунную втулку, вставляемую в блок.

Гильза цилиндров с блоком

Гильза цилиндра сверху закрыта головкой. Коленчатый вал также крепится к блоку в нижней его части. Механизм преобразует прямолинейное движение поршня во вращательное движение коленчатого вала. То самое вращение, которое, в конечном счете, заставляет крутиться колеса автомобиля.

Газораспределительный механизм отвечает за подачу смеси паров топлива и воздуха в пространство над поршнем и удаление продуктов горения через клапаны, открываемые строго в определенный момент времени.

Система питания отвечает в первую очередь за приготовление горючей смеси нужного состава. Устройства системы хранят топливо, очищают его, смешивают с воздухом так, чтобы обеспечить приготовление смеси нужного состава и количества. Также система отвечает за удаление из двигателя продуктов горения топлива.

При работе двигателя образуется тепловая энергия в количестве большем, чем двигатель способен преобразовать в механическую энергию. К сожалению, так называемый термический коэффициент полезного действия, даже лучших образцов современных двигателей не превышает 40%. Поэтому приходится большое количество «лишней» теплоты рассеивать в окружающем пространстве. Именно этим и занимается , отводит тепло и поддерживает стабильную рабочую температуру двигателя.

Система смазки . Это как раз тот случай: «Не подмажешь, не поедешь». В двигателях внутреннего сгорания большое количество узлов трения и так называемых подшипников скольжения: есть отверстие, в нем вращается вал. Не будет смазки, от трения и перегрева узел выйдет из строя.

Система зажигания призвана поджечь, строго в определенный момент времени, смесь топлива и воздуха в пространстве над поршнем. такой системы нет. Там топливо самовоспламеняется при определенных условиях.

Видео:

Система управления двигателем при помощи электронного блока управлении (ЭБУ) управляет системами двигателя и координирует их работу. В первую очередь это приготовление смеси нужного состава и своевременное поджигание её в цилиндрах двигателя.

Роторно-поршневой двигатель(РПД), или двигатель Ванкеля. Двигатель внутреннего сгорания, разработанный Феликсом Ванкелем в 1957 году в соавторстве с Вальтером Фройде. В РПД функцию поршня выполняет трехвершинный (трехгранный) ротор, совершающий вращательные движения внутри полости сложной формы. После волны экспериментальных моделей автомобилей и мотоциклов, пришедшейся на 60-е и 70-е годы ХХ века, интерес к РПД снизился, хотя ряд компаний по-прежнему работает над совершенствованием конструкции двигателя Ванкеля. В настоящее время РПД оснащаются легковые автомобили компании Mazda. Роторно-поршневой двигатель находит применение в моделизме.

Принцип работы

Сила давления газов от сгоревшей топливо-воздушной смеси приводит в движение ротор, насаженный через подшипники на эксцентриковый вал. Движение ротора относительно корпуса двигателя (статора) производится через пару шестерен, одна из которых, большего размера, закреплена на внутренней поверхности ротора, вторая, опорная, меньшего размера, жестко прикреплена к внутренней поверхности боковой крышки двигателя. Взаимодействие шестерен приводит к тому, что ротор совершает круговые эксцентричные движения, соприкасаясь гранями с внутренней поверхностью камеры сгорания. В результате между ротором и корпусом двигателя образуются три изолированные камеры переменного объема, в которых происходят процессы сжатия топливо-воздушной смеси, ее сгорания, расширения газов, оказывающих давление на рабочую поверхность ротора и очищения камеры сгорания от отработанных газов. Вращательное движение ротора передается на эксцентриковый вал, установленный на подшипниках и передающий вращающий момент на механизмы трансмиссии. Таким образом в РПД одновременно работают две механические пары: первая - регулирующая движение ротора и состоящая из пары шестерен; и вторая - преобразующая круговое движение ротора во вращение эксцентрикового вала. Передаточное соотношение шестерен ротора и статора 2:3, поэтому за один полный оборот эксцентрикового вала ротор успевает провернуться на 120 градусов. В свою очередь за один полный оборот ротора в каждой из трех образуемых его гранями камер производится полный четырехтактный цикл двигателя внутреннего сгорания.
схема РПД
1 - впускное окно; 2 выпускное окно; 3 - корпус; 4 - камера сгорания; 5 – неподвижная шестерня; 6 - ротор; 7 – зубчатое колесо; 8 - вал; 9 – свеча зажигания

Достоинства РПД

Главным достоинством роторно-поршневого двигателя является простота конструкции. В РПД на 35-40 процентов меньше деталей, чем в поршневом четырехтактном двигателе. В РПД отсутствуют поршни, шатуны, коленчатый вал. В «классическом» варианте РПД нет и газораспределительного механизма. Топливо-воздушная смесь поступает в рабочую полость двигателя через впускное окно, которое открывает грань ротора. Отработанные газы выбрасываются через выпускное окно, которое пересекает, опять же, грань ротора (это напоминает устройство газораспределения двухтактного поршневого двигателя).
Отдельного упоминания заслуживает система смазки, которая в простейшем варианте РПД практически отсутствует. Масло добавляется в топливо - как при эксплуатации двухтактных мотоциклетных моторов. Смазка пар трения (прежде всего ротора и рабочей поверхности камеры сгорания) производится самой топливо-воздушной смесью.
Поскольку масса ротора невелика и легко уравновешивается массой противовесов эксцентрикового вала, РПД отличается небольшим уровнем вибраций и хорошей равномерностью работы. В автомобилях с РПД легче уравновесить двигатель, добившись минимального уровня вибраций, что хорошо сказывается на комфортабельности машины в целом. Особой плавностью хода отличаются двухроторные двигатели, в которых роторы сами являются снижающими уровень вибраций балансирами.
Еще одно привлекательное качество РПД - высокая удельная мощность при высоких оборотах эксцентрикового вала. Это позволяет добиться от автомобиля с РПД отличных скоростных характеристик при относительно небольшом расходе топлива. Малая инерционность ротора и повышенная по сравнению с поршневыми двигателями внутреннего сгорания удельная мощность позволяют улучшить динамику автомобиля.
Наконец, немаловажным достоинством РПД являются небольшие размеры. Роторный двигатель меньше поршневого четырехтактного мотора той же мощности примерно вдвое. И это позволяет рациональней использовать пространство моторного отсека, более точно рассчитывать расположение узлов трансмиссии и нагрузку на переднюю и заднюю ось.

Недостатки РПД

Главный недостаток роторно-поршневого двигателя - невысокая эффективность уплотнений зазора между ротором и камерой сгорания. Имеющий сложную форму ротор РПД требует надежных уплотнений не только по граням (а их четыре у каждой поверхности - две по вершинным, две по боковым граням), но и по боковой поверхности, соприкасающейся с крышками двигателя. При этом уплотнения выполнены в виде подпружиненных полосок из высоколегированной стали с особо точной обработкой как рабочих поверхностей, так и торцов. Заложенные в конструкцию уплотнений допуски на расширение металла от нагрева ухудшают их характеристики - избежать прорыва газов у торцевых участков уплотнительных пластин практически невозможно (в поршневых двигателях используют лабиринтовый эффект, устанавливая уплотнительные кольца зазорами в разные стороны).
В последние годы надежность уплотнений резко возросла. Конструкторы нашли новые материалы для уплотнений. Однако, говорить о каком-то прорыве пока не приходится. Уплотнения до сих пор остаются самым узким местом РПД.
Сложная система уплотнений ротора требует эффективной смазки трущихся поверхностей. РПД потребляет больше масла, чем четырехтактный поршневой двигатель (от 400 граммов до 1 килограмма на 1000 километров). При этом масло сгорает вместе с топливом, что плохо сказывается на экологичности моторов. В выхлопных газах РПД опасных для здоровья людей веществ больше, чем в выхлопных газах поршневых двигателей.
Особые требования предъявляются и к качеству масел, используемых в РПД. Это связано, во-первых, со склонностью к повышенному износу (из-за большой площади соприкасающихся деталей - ротора и внутренней камеры двигателя), во-вторых, к перегреву (опять же из-за повышенного трения и из-за небольших размеров самого двигателя). Для РПД смертельно опасны нерегулярная смена масла - поскольку абразивные частицы в старом масле резко увеличивают износ двигателя, и переохлаждение мотора. Запуск холодного двигателя и недостаточный его прогрев приводят к тому, что в зоне контакта уплотнений ротора с поверхностью камеры сгорания и боковыми крышками оказывается мало смазки. Если поршневой двигатель заклинивает при перегреве, то РПД чаще всего - во время запуска холодного двигателя (или при движении в холодную погоду, когда охлаждение оказывается избыточным).
В целом рабочая температура РПД выше, чем у поршневых двигателей. Самая термонапряженная область - камера сгорания, которая имеет небольшой объем и, соответственно, повышенную температуру, что затрудняет процесс поджига топливо-воздушной смеси (РПД из-за протяженной формы камеры сгорания склонны к детонации, что тоже можно отнести к недостаткам этого типа двигателей). Отсюда требовательность РПД к качеству свечей. Обычно их устанавливают в эти двигатели попарно.
Роторно-поршневые двигатели при великолепных мощностных и скоростных характеристиках оказываются менее гибкими (или менее эластичными), чем поршневые. Они выдают оптимальную мощность только на достаточно высоких оборотах, что вынуждает конструкторов использовать РПД в паре с многоступенчатыми КП и усложняет конструкцию автоматических коробок передач. В конечном итоге РПД оказываются не такими экономичными, какими должны быть в теории.

Практическое применение в автопромышленности

Наибольшее распространение РПД получили в конце 60-х и начале 70-х годов прошлого столетия, когда патент на двигатель Ванкеля был куплен 11 ведущими автопроизводителями мира.
В 1967 году немецкая компания NSU выпустила серийный легковой автомобиль бизнес-класса NSU Ro 80 . Эта модель выпускалась в течение 10 лет и разошлась по миру в количестве 37204 экземпляров. Автомобиль пользовался популярностью, но недостатки установленного в нем РПД, в конце концов, испортили репутацию этой замечательной машины. На фоне долговечных конкурентов модель NSU Ro 80 выглядела «бледно» - пробег до капитального ремонта двигателя при заявленных 100 тысячах километров не превышал 50 тысяч.
С РПД экспериментировали концерн Citroen , Mazda , ВАЗ . Наибольших успехов добилась Mazda, которая выпустила свой легковой автомобиль с РПД еще в 1963 году, на четыре года раньше появления NSU Ro 80. Сегодня концерн Mazda оснащает РПД спорткары серии RX. Современные автомобили Mazda RX-8 избавлены от многих недостатков РПД Феликса Ванкеля. Они вполне экологичны и надежны, хотя среди автовладельцев и специалистов по ремонту считаются «капризными».

Практическое применение в мотопромышленности

В 70-е и 80-е годы с РПД экспериментировали некоторые производители мотоциклов - Hercules, Suzuki и другие. В настоящее время мелкосерийное производство «роторных» мотоциклов налажено только в компании Norton, выпускающей модель NRV588 и готовящей к серийному выпуску мотоцикл NRV700.
Norton NRV588 - спортбайк, оснащенный двухроторным двигателем общим объемом в 588 кубических сантиметров и развивающим мощность в 170 лошадиных сил. При сухом весе мотоцикла в 130 кг энерговооруженность спортбайка выглядит в буквальном смысле запредельной. Двигатель этой машины оснащен системами впускного тракта переменной величины и электронного впрыска топлива. О модели NRV700 известно лишь то, что мощность РПД у этого спортбайка будет достигать 210 л.с.

Поршневые ДВС нашли самое широкое распространение в качестве источников энергии на автомобильном, железнодорожном и морском транспорте, в сельскохозяйственном и строительном производствах (тракторы, бульдозеры), в системах аварийного энергообеспечения специальных объектов (больницы, линии связи и т.п.) и во многих других областях человеческой деятельности. В последние годы особое распространение получают мини-ТЭЦ на основе газопоршневых ДВС, с помощью которых эффективно решаются задачи энергоснабжения небольших жилых районов или производств. Независимость таких ТЭЦ от централизованных систем (типа РАО ЕЭС) повышает надежность и устойчивость их функционирования.

Весьма разнообразные по конструктивному выполнению поршневые ДВС способны обеспечивать очень широкий интервал мощностей - от очень малых (двигатель для авиамоделей) до очень больших (двигатель для океанских танкеров).

С основами устройства и принципом действия поршневых ДВС мы неоднократно знакомились, начиная от школьного курса физики и кончая курсом «Техническая термодинамика». И все же, чтобы закрепить и углубить знания, рассмотрим очень кратко еще раз этот вопрос.

На рис. 6.1 приведена схема устройства двигателя. Как известно, сжигание топлива в ДВС осуществляется непосредственно в рабочем теле. В поршневых ДВС такое сжигание проводится в рабочем цилиндре 1 с движущимся в нем поршнем 6. Образующиеся в результате сгорания дымовые газы толкают поршень, заставляя его совершать полезную работу. Поступательное движение поршня с помощью шатуна 7 и коленчатого вала 9 преобразуется во вращательное, более удобное для использования. Коленчатый вал располагается в картере, а цилиндры двигателя - в другой корпусной детали, называемой блоком (или рубашкой) цилиндров 2. В крышке цилиндра 5 находятся впускной 3 и выпускной 4 клапаны с принудительным кулачковым приводом от специального распределитель-ного вала, кинематически связанного с коленчатым валом машины.

Рис. 6.1.

Чтобы двигатель работал непрерывно, необходимо периодически удалять из цилиндра продукты сгорания и заполнять его новыми порциями топлива и окислителя (воздуха), что и осуществляется благодаря перемещениям поршня и работе клапанов.

Поршневые ДВС принято классифицировать по различным общим признакам.

  • 1. По способу смесеобразования, зажигания и подвода тепла двигатели делят на машины с принудительным зажиганием и с самовоспламенением (карбюраторные или инжекторные и дизельные).
  • 2. По организации рабочего процесса - на четырехтактные и двухтактные. В последних рабочий процесс совершается не за четыре, а за два хода поршня. В свою очередь, двухтактные ДВС подразделяются на машины с прямоточной клапанно-щелевой продувкой, с кривошипно-камерной продувкой, с прямоточной продувкой и противоположно движущимися поршнями и др.
  • 3. По назначению - на стационарные, судовые, тепловозные, автомобильные, автотракторные и др.
  • 4. По числу оборотов - на малооборотные (до 200 об/мин) и высокооборотные.
  • 5. По средней скорости поршня й> п = ? п / 30 - на тихоходные и быстроходные (й?„ > 9 м/с).
  • 6. По давлению воздуха в начале сжатия - на обычные и с наддувом при помощи приводных воздуходувок.
  • 7. По использованию тепла выхлопных газов - на обычные (без использования этого тепла), с турбонаддувом и комбинированные. У машин с турбонаддувом выпускные клапаны открываются несколько раньше обычного и дымовые газы с более высоким давлением, чем обычно, направляются в импульсную турбину, которая приводит в действие турбокомпрессор, подающий воздух в цилиндры. Это позволяет сжигать в цилиндре больше топлива, улучшая и КПД, и технические характеристики машины. У комбинированных ДВС поршневая часть служит во многом генератором газа и вырабатывает только ~ 50-60% мощности машины. Остальную часть общей мощности получают от газовой турбины, работающей на дымовых газах. Для этого дымовые газы при высоком давлении р и температуре / направляются в турбину, вал которой с помощью зубчатой передачи или гидромуфты передает получаемую мощность главному валу установки.
  • 8. По числу и расположению цилиндров двигатели бывают: одно-, двух- и многоцилиндровые, рядные, К-образные, .Т-образные.

Рассмотрим теперь реальный процесс современного четырехтактного дизеля. Четырехтактным его называют потому, что полный цикл здесь осуществляется за четыре полных хода поршня, хотя, как мы сейчас увидим, за это время осуществляется несколько больше реальных термодинамических процессов. Эти процессы наглядно представлены на рис 6.2.


Рис. 6.2.

I - всасывание; II - сжатие; III - рабочий ход; IV - выталкивание

Во время такта всасывания (1) всасывающий (впускной) клапан открывается за несколько градусов до верхней мертвой точки (ВМТ). Моменту открытия соответствует точка г на р- ^-диаграмме. При этом процесс всасывания происходит при движении поршня к нижней мертвой точке (НМТ) и идет при давлении р нс меньше атмосферного /; а (или давления наддува р н). При перемене направления движения поршня (от НМТ к ВМТ) впускной клапан закрывается тоже не сразу, а с определенным запаздыванием (в точке т ). Далее при закрытых клапанах происходит сжатие рабочего тела (до точки с). В дизельных машинах всасывается и сжимается чистый воздух, а в карбюраторных - рабочая смесь воздуха с парами бензина. Этот ход поршня принято называть тактом сжатия (II).

За несколько градусов угла поворота коленчатого вала до ВМТ в цилиндр впрыскивается через форсунку дизельное топливо, происходит его самовоспламенение, сгорание и расширение продуктов сгорания. В карбюраторных машинах рабочая смесь принудительно поджигается с помощью электрического искрового разряда.

При сжатии воздуха и сравнительно малом теплообмене со стенками температура его значительно повышается, превышая температуру самовоспламенения топлива. Поэтому впрыснутое мелко распыленное топливо очень быстро прогревается, испаряется и загорается. В результате сгорания топлива давление в цилиндре сначала резко, а затем, когда поршень начинает свой путь к НМТ, с уменьшающимся темпом увеличивается до максимума, а затем по мере сгорания последних порций топлива, поступившего при впрыскивании, даже начинает уменьшаться (из-за интенсивного роста объема цилиндра). Будем считать условно, что в точке с" процесс горения заканчивается. Далее следует процесс расширения дымовых газов, когда сила их давления перемещает поршень к НМТ. Третий ход поршня, включающий процессы сгорания и расширения, называют рабочим ходом (III), ибо только в это время двигатель совершает полезную работу. Эту работу аккумулируют с помощью маховика и отдают потребителю. Часть аккумулированной работы расходуется при совершении остальных трех тактов.

Когда поршень приближается к НМТ, с некоторым опережением открывается выпускной клапан (точка Ь ) и отработанные дымовые газы устремляются в выхлопную трубу, а давление в цилиндре резко падает почти до атмосферного. При ходе поршня к ВМТ происходит выталкивание дымовых газов из цилиндра (IV - выталкивание). Поскольку выпускной тракт двигателя обладает определенным гидравлическим сопротивлением, давление в цилиндре во время этого процесса остается выше атмосферного. Выпускной клапан закрывается позже прохождения ВМТ (точка п), гак что в каждом цикле возникает ситуация, когда одновременно открыты и впускной, и выпускной клапаны (говорят о перекрытии клапанов). Это позволяет лучше очистить рабочий цилиндр от продуктов сгорания, в результате увеличивается эффективность и полнота сгорания топлива.

По-другому организуется цикл у двухтактных машин (рис. 6.3). Обычно это двигатели с наддувом, и для этого они, как правило, имеют приводную воздуходувку или турбокомпрессор 2 , который во время работы двигателя нагнетает воздух в воздушный ресивер 8.

Рабочий цилиндр двухтактного двигателя всегда имеет продувочные окна 9, через которые воздух из ресивера попадает в цилиндр, когда поршень, проходя к НМТ, начнет открывать их все больше и больше.

За первый ход поршня, который принято называть рабочим ходом, в цилиндре двигателя происходит сгорание впрыснутого топлива и расширение продуктов сгорания. Эти процессы на индикаторной диаграмме (рис. 6.3, а) отражены линией с - I - т. В точке т открываются выпускные клапаны и под действием избыточного давления дымовые газы устремляются в выпускной тракт 6, в резуль-

Рис. 6.3.

1 - всасывающий патрубок; 2 - воздуходувка (или турбокомпрессор); 3 - поршень; 4 - выпускные клапаны; 5 - форсунка; 6 - выпускной тракт; 7 - рабочий

цилиндр; 8 - воздушный ресивер; 9- продувочные окна

тате давление в цилиндре заметно падает (точка п). Когда поршень опускается настолько, что начинают открываться продувочные окна, в цилиндр устремляется сжатый воздух из ресивера 8 , выталкивая из цилиндра остатки дымовых газов. При этом рабочий объем продолжает увеличиваться, а давление в цилиндре уменьшается практически до давления в ресивере.

Когда направление движения поршня меняется на противоположное, процесс продувки цилиндра продолжается до тех пор, пока продувочные окна остаются хотя бы частично открытыми. В точке к (рис. 6.3, б) поршень полностью перекрывает продувочные окна и начинается сжатие очередной порции воздуха, попавшего в цилиндр. За несколько градусов до ВМТ (в точке с") начинается впрыск топлива через форсунку, а далее происходят описанные ранее процессы, приводящие к воспламенению и сгоранию топлива.

На рис. 6.4 приведены схемы, поясняющие конструктивное устройство других типов двухтактных двигателей. В целом рабочий цикл у всех этих машин аналогичен описанному, а конструктивные особенности во многом сказываются только на продолжительности


Рис. 6.4.

а - петлевая щелевая продувка; 6 - прямоточная продувка с противоположно движущимися поршнями; в - кривошипно-камерная продувка

отдельных процессов и, как следствие, на технико-экономических характеристиках двигателя.

В заключение следует отметить, что двухтактные двигатели теоретически позволяют при прочих равных условиях получать вдвое большую мощность, однако в действительности из-за худших условий очистки цилиндра и сравнительно больших внутренних потерь этот выигрыш несколько меньше.

Новое на сайте

>

Самое популярное