Home Lighting Powerful PWM regulator. PWM controller. Pulse width modulation. Scheme Engine speed controllers on timer 555

Powerful PWM regulator. PWM controller. Pulse width modulation. Scheme Engine speed controllers on timer 555

It is convenient to regulate the supply voltage of powerful consumers using regulators with pulse-width modulation. The advantage of such regulators is that the output transistor operates in switch mode, which means it has two states - open or closed. It is known that the greatest heating of the transistor occurs in a half-open state, which leads to the need to install it on a large area radiator and save it from overheating.

I propose a simple PWM regulator circuit. The device is powered from a 12V DC voltage source. With the specified instance of the transistor, it can withstand current up to 10A.

Let's consider the operation of the device: A multivibrator with an adjustable duty cycle is assembled on transistors VT1 and VT2. The pulse repetition rate is about 7 kHz. From the collector of transistor VT2, pulses are sent to key transistor VT3, which controls the load. The duty cycle is regulated by variable resistor R4. When the slider of this resistor is in the extreme left position, see the top diagram, the pulses at the output of the device are narrow, which indicates the minimum output power of the regulator. In the extreme right position, see the bottom diagram, the pulses are wide, the regulator operates at full power.


Diagram of PWM operation in KT1

Using this regulator, you can control 12 V household incandescent lamps, a DC motor with an insulated housing. If the regulator is used in a car, where the minus is connected to the body, the connection should be made through a pnp transistor, as shown in the figure.
Details: Almost any low-frequency transistors can operate in the generator, for example KT315, KT3102. Key transistor IRF3205, IRF9530. We can replace the pnp transistor P210 with KT825, and the load can be connected to a current of up to 20A!

And in conclusion, it should be said that this regulator has been working in my car with an interior heating engine for more than two years.

List of radioelements

Designation Type Denomination Quantity NoteShopMy notepad
VT1, VT2 Bipolar transistor

KTC3198

2 To notepad
VT3 Field-effect transistorN302AP1 To notepad
C1 Electrolytic capacitor220uF 16V1 To notepad
C2, C3 Capacitor4700 pF2 To notepad
R1, R6 Resistor

4.7 kOhm

2 To notepad
R2 Resistor

2.2 kOhm

1 To notepad
R3 Resistor

27 kOhm

1 To notepad
R4 Variable resistor150 kOhm1 To notepad
R5 Resistor

Smooth engine operation, without jerks or power surges, is the key to its durability. To control these indicators, an electric motor speed controller is used for 220V, 12V and 24V; all of these frequencies can be made with your own hands or you can buy a ready-made unit.

Why do you need a speed controller?

An engine speed controller, a frequency converter, is a device with a powerful transistor, which is necessary to invert the voltage, as well as to ensure smooth stopping and starting of an asynchronous motor using PWM. PWM – wide-pulse control of electrical devices. It is used to create a specific sinusoid of alternating and direct current.

Photo - a powerful regulator for an asynchronous motor

The simplest example of a converter is a conventional voltage stabilizer. But the device under discussion has a much wider range of operation and power.

Frequency converters are used in any device that is powered by electrical energy. Governors provide extremely precise electrical motor control so that engine speed can be adjusted up or down, maintaining revs at the desired level, and protecting instruments from sudden revving. In this case, the electric motor uses only the energy needed to operate, instead of running it at full power.


Photo – DC motor speed controller

Why do you need a speed controller for an asynchronous electric motor:

  1. To save energy. By controlling the speed of the motor, the smoothness of its start and stop, strength and speed, you can achieve significant savings in personal funds. As an example, reducing speed by 20% can result in energy savings of 50%.
  2. The frequency converter can be used to control process temperature, pressure or without the use of a separate controller;
  3. No additional controller required for soft start;
  4. Maintenance costs are significantly reduced.

The device is often used for a welding machine (mainly for semi-automatic machines), an electric stove, a number of household appliances (vacuum cleaner, sewing machine, radio, washing machine), home heater, various ship models, etc.


Photo – PWM speed controller

Operating principle of the speed controller

The speed controller is a device consisting of the following three main subsystems:

  1. AC motor;
  2. Main drive controller;
  3. Drive and additional parts.

When the AC motor is started at full power, current is transferred with the full power of the load, this is repeated 7-8 times. This current bends the motor windings and generates heat that will be generated for a long time. This can significantly reduce engine longevity. In other words, the converter is a kind of step inverter that provides double energy conversion.


Photo - diagram of the regulator for a commutator motor

Depending on the incoming voltage, the frequency regulator of the speed of a three-phase or single-phase electric motor rectifies the current of 220 or 380 volts. This action is carried out using a rectifying diode, which is located at the energy input. Next, the current is filtered using capacitors. Next, PWM is generated, the electrical circuit is responsible for this. Now the windings of the induction motor are ready to transmit the pulse signal and integrate them into the desired sine wave. Even with a microelectric motor, these signals are issued, literally, in batches.


Photo - sinusoid of normal operation of an electric motor

How to choose a regulator

There are several characteristics by which you need to choose a speed controller for a car, machine electric motor, or household needs:

  1. Control type. For commutator motors, there are regulators with a vector or scalar control system. The former are more often used, but the latter are considered more reliable;
  2. Power. This is one of the most important factors for choosing an electrical frequency converter. It is necessary to select a frequency generator with a power that corresponds to the maximum permissible on the protected device. But for a low-voltage motor it is better to choose a regulator more powerful than the permissible watt value;
  3. Voltage. Naturally, everything here is individual, but if possible, you need to buy a speed controller for an electric motor, the circuit diagram of which has a wide range of permissible voltages;
  4. Frequency range. Frequency conversion is the main task of this device, so try to choose a model that will best suit your needs. Let's say, for a manual router, 1000 Hertz will be enough;
  5. According to other characteristics. This is the warranty period, the number of inputs, the size (there is a special attachment for desktop machines and hand tools).

At the same time, you also need to understand that there is a so-called universal rotation regulator. This is a frequency converter for brushless motors.


Photo – regulator diagram for brushless motors

There are two parts in this circuit - one is logical, where the microcontroller is located on the chip, and the second is power. Basically, such an electrical circuit is used for a powerful electric motor.

Video: electric motor speed controller with SHIRO V2

How to make a homemade engine speed controller

You can make a simple triac motor speed controller, its diagram is presented below, and the price consists only of parts sold in any electrical store.

To work, we need a powerful triac of the BT138-600 type, it is recommended by a radio engineering magazine.


Photo - do-it-yourself speed controller diagram

In the described circuit, the speed will be adjusted using potentiometer P1. Parameter P1 determines the phase of the incoming pulse signal, which in turn opens the triac. This scheme can be used both in field farming and at home. You can use this regulator for sewing machines, fans, tabletop drilling machines.

The principle of operation is simple: at the moment when the motor slows down a little, its inductance drops, and this increases the voltage in R2-P1 and C3, which in turn leads to a longer opening of the triac.

A thyristor feedback regulator works a little differently. It allows energy to flow back into the energy system, which is very economical and beneficial. This electronic device involves the inclusion of a powerful thyristor in the electrical circuit. His diagram looks like this:


Here, to supply direct current and rectify, a control signal generator, an amplifier, a thyristor, and a speed stabilization circuit are required.

A regulator circuit based on pulse width modulation, or simply , can be used to change the speed of a 12 volt DC motor. Regulating the shaft speed using PWM gives greater performance than simply varying the DC voltage supplied to the motor.

Engine speed controller shim

The motor is connected to field-effect transistor VT1, which is controlled by a PWM multivibrator based on the popular NE555 timer. Due to the application, the speed control scheme turned out to be quite simple.

As mentioned above, engine speed controller made using a simple pulse generator generated by an astable multivibrator with a frequency of 50 Hz made on the NE555 timer. The signals from the output of the multivibrator provide bias to the gate of the MOSFET transistor.

The duration of the positive pulse can be adjusted with variable resistor R2. The greater the width of the positive pulse entering the gate of the MOSFET transistor, the more power is supplied to the DC motor. And vice versa, the narrower its width, the less power is transmitted and, as a result, the reduction engine speed. This circuit can operate from a 12 volt power source.

Characteristics of transistor VT1 (BUZ11):

  • Transistor type: MOSFET
  • Polarity: N
  • Maximum power dissipation (W): 75
  • Maximum permissible drain-source voltage (V): 50
  • Maximum permissible gate-source voltage (V): 20
  • Maximum permissible continuous drain current (A): 30

The simplest method of controlling the rotation speed of a DC motor is based on the use of pulse width modulation (PWM or PWM). The essence of this method is that the supply voltage is supplied to the motor in the form of pulses. In this case, the pulse repetition rate remains constant, but their duration can vary.

The PWM signal is characterized by such a parameter as the duty cycle or duty cycle. This is the reciprocal of the duty cycle and is equal to the ratio of the pulse duration to its period.

D = (t/T) * 100%

The figures below show PWM signals with different duty cycles.


With this control method, the motor rotation speed will be proportional to the duty cycle of the PWM signal.

Simple DC Motor Control Circuit

The simplest DC motor control circuit consists of a field-effect transistor, the gate of which is supplied with a PWM signal. The transistor in this circuit acts as an electronic switch that switches one of the motor terminals to ground. The transistor opens at the moment of the pulse duration.

How will the engine behave when turned on like this? If the frequency of the PWM signal is low (several Hz), the motor will turn jerkily. This will be especially noticeable with a small duty cycle of the PWM signal.
At a frequency of hundreds of Hz, the motor will rotate continuously and its rotation speed will change in proportion to the duty cycle. Roughly speaking, the engine will “perceive” the average value of the energy supplied to it.

Circuit for generating a PWM signal

There are many circuits for generating a PWM signal. One of the simplest is a circuit based on a 555 timer. It requires a minimum of components, requires no setup and can be assembled in one hour.


The VCC circuit supply voltage can be in the range of 5 - 16 Volts. Almost any diodes can be used as diodes VD1 - VD3.

If you are interested in understanding how this circuit works, you need to refer to the block diagram of the 555 timer. The timer consists of a voltage divider, two comparators, a flip-flop, an open collector switch and an output buffer.



The power supply (VCC) and reset pins are connected to the power supply plus, say +5 V, and the ground pin (GND) to the minus. The open collector of the transistor (DISC pin) is connected to the power supply positive through a resistor and the PWM signal is removed from it. The CONT pin is not used; a capacitor is connected to it. The THRES and TRIG comparator pins are combined and connected to an RC circuit consisting of a variable resistor, two diodes and a capacitor. The middle pin of the variable resistor is connected to the OUT pin. The extreme terminals of the resistor are connected through diodes to a capacitor, which is connected to the ground with the second terminal. Thanks to this inclusion of diodes, the capacitor is charged through one part of the variable resistor and discharged through the other.

When the power is turned on, the OUT pin is at a low logical level, then the THRES and TRIG pins, thanks to the VD2 diode, will also be at a low level. The upper comparator will switch the output to zero, and the lower one to one. The output of the trigger will be set to zero (because it has an inverter at the output), the transistor switch will close, and the OUT pin will be set to a high level (because it has an inverter at the input). Next, capacitor C3 will begin to charge through diode VD1. When it charges to a certain level, the lower comparator will switch to zero, and then the upper comparator will switch the output to one. The trigger output will be set to a unity level, the transistor switch will open, and the OUT pin will be set to a low level. Capacitor C3 will begin to discharge through diode VD2 until it is completely discharged and the comparators switch the trigger to another state. The cycle will then repeat.

The approximate frequency of the PWM signal generated by this circuit can be calculated using the following formula:


F = 1.44/(R1*C1), [Hz]

where R1 is in ohms, C1 is in farads.

With the values ​​indicated in the diagram above, the frequency of the PWM signal will be equal to:


F = 1.44/(50000*0.0000001) = 288 Hz.

PWM DC motor speed controller

Let's combine the two circuits presented above, and we get a simple DC motor speed controller circuit, which can be used to control the engine speed of a toy, robot, micro drill, etc.



VT1 is an n-type field-effect transistor capable of withstanding the maximum motor current at a given voltage and shaft load. VCC1 is from 5 to 16 V, VCC2 is greater than or equal to VCC1.

Instead of a field-effect transistor, you can use a bipolar n-p-n transistor, a Darlington transistor, or an opto-relay of appropriate power.

This DIY circuit can be used as a speed controller for a 12V DC motor with a current rating of up to 5A, or as a dimmer for 12V halogen and LED lamps up to 50W. Control is carried out using pulse width modulation (PWM) at a pulse repetition rate of about 200 Hz. Naturally, the frequency can be changed if necessary, selecting for maximum stability and efficiency.

Most of these structures are assembled according to a much simpler scheme. Here we present a more advanced version that uses a 7555 timer, a bipolar transistor driver and a powerful MOSFET. This design provides improved speed control and operates over a wide load range. This is indeed a very effective scheme and the cost of its parts when purchased for self-assembly is quite low.

PWM controller circuit for 12 V motor

The circuit uses a 7555 Timer to create a variable pulse width of about 200 Hz. It controls transistor Q3 (via transistors Q1 - Q2), which controls the speed of the electric motor or light bulbs.

There are many applications for this circuit that will be powered by 12V: electric motors, fans or lamps. It can be used in cars, boats and electric vehicles, in model railways and so on.

12 V LED lamps, for example LED strips, can also be safely connected here. Everyone knows that LED bulbs are much more efficient than halogen or incandescent bulbs and will last much longer. And if necessary, power the PWM controller from 24 volts or more, since the microcircuit itself with a buffer stage has a power stabilizer.

AC Motor Speed ​​Controller

PWM controller 12 volt

Half Bridge DC Regulator Driver

Mini drill speed controller circuit

ENGINE SPEED CONTROL WITH REVERSE

Hello everyone, probably many radio amateurs, like me, have more than one hobby, but several. In addition to designing electronic devices, I do photography, video shooting with a DSLR camera, and video editing. As a videographer, I needed a slider for video shooting, and first I’ll briefly explain what it is. The photo below shows the factory slider.

The slider is designed for video shooting on cameras and video cameras. It is analogous to the rail system used in wide-format cinema. With its help, a smooth movement of the camera around the object being photographed is created. Another very powerful effect that can be used when working with a slider is the ability to move closer or further from the subject. The next photo shows the engine that was chosen to make the slider.

The slider is driven by a 12-volt DC motor. A diagram of a regulator for the motor that moves the slider carriage was found on the Internet. The next photo shows the power indicator on the LED, the toggle switch that controls the reverse and the power switch.

When operating such a device, it is important that there is smooth speed control, plus easy inclusion of engine reverse. The speed of rotation of the motor shaft, in the case of using our regulator, is smoothly adjusted by rotating the knob of a 5 kOhm variable resistor. Perhaps I am not the only one of the users of this site who is interested in photography, and someone else will want to replicate this device; those who wish can download an archive with a circuit diagram and printed circuit board of the regulator at the end of the article. The following figure shows a schematic diagram of a regulator for an engine:

Regulator circuit

The circuit is very simple and can be easily assembled even by novice radio amateurs. Among the advantages of assembling this device, I can name its low cost and the ability to customize it to meet your needs. The figure shows the controller's printed circuit board:

But the scope of application of this regulator is not limited to sliders alone; it can easily be used as a speed regulator, for example, a machine drill, a homemade Dremel powered by 12 volts, or a computer cooler, for example, with dimensions of 80 x 80 or 120 x 120 mm. I also developed a scheme for reversing the engine, or in other words, quickly changing the rotation of the shaft in the other direction. To do this, I used a six-pin toggle switch with 2 positions. The following figure shows its connection diagram:

The middle contacts of the toggle switch, marked (+) and (-), are connected to the contacts on the board marked M1.1 and M1.2, the polarity does not matter. Everyone knows that computer coolers, when the supply voltage and, accordingly, the speed are reduced, make much less noise during operation. In the next photo, the KT805AM transistor is on the radiator:

Almost any medium and high power n-p-n structure transistor can be used in the circuit. The diode can also be replaced with analogues suitable for the current, for example 1N4001, 1N4007 and others. The motor terminals are shunted by a diode in reverse connection; this was done to protect the transistor during switch-on and switch-off moments of the circuit, since our motor has an inductive load. Also, the circuit provides an indication that the slider is turned on on an LED connected in series with a resistor.

When using an engine of greater power than shown in the photo, the transistor must be attached to the radiator to improve cooling. A photo of the resulting board is shown below:

The regulator board was manufactured using the LUT method. You can see what happened in the end in the video.

Video of work

Soon, as soon as the missing parts, mainly mechanics, are acquired, I will begin assembling the device in the case. Sent the article Alexey Sitkov .

Diagrams and overview of 220V electric motor speed controllers

To smoothly increase and decrease the shaft rotation speed, there is a special device - a 220V electric motor speed controller. Stable operation, no voltage interruptions, long service life - the advantages of using an engine speed controller for 220, 12 and 24 volts.

  • Why do you need a frequency converter?
  • Application area
  • Selecting a device
  • IF device
  • Types of devices
    • Triac device
    • Proportional Signal Process

Why do you need a frequency converter?

The function of the regulator is to invert the voltage of 12, 24 volts, ensuring smooth start and stop using pulse width modulation.

Speed ​​controllers are included in the structure of many devices, as they ensure the accuracy of electrical control. This allows you to adjust the speed to the desired amount.

Application area

DC motor speed controller is used in many industrial and domestic applications. For example:

  • heating complex;
  • equipment drives;
  • welding machine;
  • electric ovens;
  • vacuum cleaners;
  • Sewing machines;
  • washing machines.

Selecting a device

In order to select an effective regulator, it is necessary to take into account the characteristics of the device and its intended purpose.

  1. Vector controllers are common for commutator motors, but scalar controllers are more reliable.
  2. An important selection criterion is power. It must correspond to that permitted on the unit used. It is better to exceed for safe operation of the system.
  3. The voltage must be within acceptable wide ranges.
  4. The main purpose of the regulator is to convert frequency, so this aspect must be selected according to the technical requirements.
  5. You also need to pay attention to the service life, dimensions, number of inputs.

IF device

  • AC motor natural controller;
  • drive unit;
  • additional elements.

The circuit diagram of the 12 V engine speed controller is shown in the figure. The speed is adjusted using a potentiometer. If pulses with a frequency of 8 kHz are received at the input, then the supply voltage will be 12 volts.

The device can be purchased at specialized sales points, or you can make it yourself.

AC speed controller circuit

When starting a three-phase motor at full power, current is transmitted, the action is repeated about 7 times. The current bends the motor windings, generating heat over a long period of time. A converter is an inverter that provides energy conversion. The voltage enters the regulator, where 220 volts are rectified using a diode located at the input. Then the current is filtered through 2 capacitors. PWM is generated. Next, the pulse signal is transmitted from the motor windings to a specific sinusoid.

There is a universal 12V device for brushless motors.

To save on electricity bills, our readers recommend the Electricity Saving Box. Monthly payments will be 30-50% less than they were before using the saver. It removes the reactive component from the network, resulting in a reduction in load and, as a consequence, current consumption. Electrical appliances consume less electricity and costs are reduced.

The circuit consists of two parts - logical and power. The microcontroller is located on a chip. This scheme is typical for a powerful engine. The uniqueness of the regulator lies in its use with various types of engines. The circuits are powered separately; the key drivers require 12V power.

Types of devices

Triac device

The triac device is used to control lighting, power of heating elements, and rotation speed.

The controller circuit based on a triac contains a minimum of parts shown in the figure, where C1 is a capacitor, R1 is the first resistor, R2 is the second resistor.

Using a converter, power is regulated by changing the time of an open triac. If it is closed, the capacitor is charged by the load and resistors. One resistor controls the amount of current, and the second regulates the charging rate.

When the capacitor reaches the maximum voltage threshold of 12V or 24V, the switch is activated. The triac goes into the open state. When the mains voltage passes through zero, the triac is locked, and then the capacitor gives a negative charge.

Converters on electronic keys

Common thyristor regulators with a simple operating circuit.

Thyristor, works in alternating current network.

A separate type is the AC voltage stabilizer. The stabilizer contains a transformer with numerous windings.

DC stabilizer circuit

24 volt thyristor charger

To a 24 volt voltage source. The principle of operation is to charge a capacitor and a locked thyristor, and when the capacitor reaches voltage, the thyristor sends current to the load.

Proportional Signal Process

Signals arriving at the system input form feedback. Let's take a closer look using a microcircuit.

Chip TDA 1085

The TDA 1085 chip pictured above provides feedback control of a 12V, 24V motor without loss of power. It is mandatory to contain a tachometer, which provides feedback from the engine to the control board. The stabilization sensor signal goes to a microcircuit, which transmits the task to the power elements - to add voltage to the motor. When the shaft is loaded, the board increases the voltage and the power increases. By releasing the shaft, the tension decreases. The revolutions will be constant, but the power torque will not change. The frequency is controlled over a wide range. Such a 12, 24 volt motor is installed in washing machines.

With your own hands you can make a device for a grinder, wood lathe, sharpener, concrete mixer, straw cutter, lawn mower, wood splitter and much more.

Industrial regulators, consisting of 12, 24 volt controllers, are filled with resin and therefore cannot be repaired. Therefore, a 12V device is often made independently. A simple option using the U2008B chip. The controller uses current feedback or soft start. If the latter is used, elements C1, R4 are required, jumper X1 is not needed, but with feedback, vice versa.

When assembling the regulator, choose the right resistor. Since with a large resistor there may be jerks at the start, and with a small resistor the compensation will be insufficient.

Important! When adjusting the power controller, you need to remember that all parts of the device are connected to the AC network, so safety precautions must be observed!

Speed ​​controllers for single-phase and three-phase 24, 12 volt motors are a functional and valuable device, both in everyday life and in industry.

Rotation controller for motor

On simple mechanisms it is convenient to install analog current regulators. For example, they can change the speed of rotation of the motor shaft. From the technical side, implementing such a regulator is simple (you will need to install one transistor). Suitable for adjusting independent speed of motors in robotics and power supplies. The most common types of regulators are single-channel and two-channel.

Video No. 1. Single-channel regulator in operation. Changes the rotation speed of the motor shaft by rotating the variable resistor knob.

Video No. 2. Increasing the rotation speed of the motor shaft when operating a single-channel regulator. An increase in the number of revolutions from the minimum to the maximum value when rotating the variable resistor knob.

Video No. 3. Two-channel regulator in operation. Independent setting of the torsion speed of motor shafts based on trimming resistors.

Video No. 4. The voltage at the output of the regulator was measured with a digital multimeter. The resulting value is equal to the battery voltage, from which 0.6 volts have been subtracted (the difference arises due to the voltage drop across the transistor junction). When using a 9.55 volt battery, a change from 0 to 8.9 volts is recorded.

Functions and main characteristics

The load current of single-channel (photo 1) and two-channel (photo 2) regulators does not exceed 1.5 A. Therefore, to increase the load capacity, the KT815A transistor is replaced with KT972A. The numbering of the pins for these transistors is the same (e-k-b). But the KT972A model is operational with currents up to 4A.

Single channel motor controller

The device controls one motor, powered by voltage in the range from 2 to 12 volts.

Device design

The main design elements of the regulator are shown in the photo. 3. The device consists of five components: two variable resistance resistors with a resistance of 10 kOhm (No. 1) and 1 kOhm (No. 2), a transistor model KT815A (No. 3), a pair of two-section screw terminal blocks for the output for connecting a motor (No. 4) and input for connecting a battery (No. 5).

Note 1. Installation of screw terminal blocks is not necessary. Using a thin stranded mounting wire, you can connect the motor and power source directly.

Principle of operation

The operating procedure of the motor controller is described in the electrical diagram (Fig. 1). Taking into account the polarity, a constant voltage is supplied to the XT1 connector. The light bulb or motor is connected to the XT2 connector. A variable resistor R1 is turned on at the input; rotating its knob changes the potential at the middle output as opposed to the minus of the battery. Through current limiter R2, the middle output is connected to the base terminal of transistor VT1. In this case, the transistor is switched on according to a regular current circuit. The positive potential at the base output increases as the middle output moves upward from the smooth rotation of the variable resistor knob. There is an increase in current, which is due to a decrease in the resistance of the collector-emitter junction in transistor VT1. The potential will decrease if the situation is reversed.

Electrical circuit diagram

Materials and details

A printed circuit board measuring 20x30 mm is required, made of a fiberglass sheet foiled on one side (permissible thickness 1-1.5 mm). Table 1 provides a list of radio components.

Note 2. The variable resistor required for the device can be of any manufacture; it is important to observe the current resistance values ​​​​for it indicated in Table 1.

Note 3. To regulate currents above 1.5A, the KT815G transistor is replaced with a more powerful KT972A (with a maximum current of 4A). In this case, the printed circuit board design does not need to be changed, since the distribution of pins for both transistors is identical.

Build process

For further work, you need to download the archive file located at the end of the article, unzip it and print it. The regulator drawing (termo1 file) is printed on glossy paper, and the installation drawing (montag1 file) is printed on a white office sheet (A4 format).

Next, the drawing of the circuit board (No. 1 in photo. 4) is glued to the current-carrying tracks on the opposite side of the printed circuit board (No. 2 in photo. 4). It is necessary to make holes (No. 3 in photo. 14) on the installation drawing in the mounting locations. The installation drawing is attached to the printed circuit board with dry glue, and the holes must match. Photo 5 shows the pinout of the KT815 transistor.

The input and output of terminal blocks-connectors are marked in white. A voltage source is connected to the terminal block via a clip. A fully assembled single-channel regulator is shown in the photo. The power source (9 volt battery) is connected at the final stage of assembly. Now you can adjust the shaft rotation speed using the motor; to do this, you need to smoothly rotate the variable resistor adjustment knob.

To test the device, you need to print a disk drawing from the archive. Next, you need to paste this drawing (No. 1) onto thick and thin cardboard paper (No. 2). Then, using scissors, a disc is cut out (No. 3).

The resulting workpiece is turned over (No. 1) and a square of black electrical tape (No. 2) is attached to the center for better adhesion of the surface of the motor shaft to the disk. You need to make a hole (No. 3) as shown in the image. Then the disk is installed on the motor shaft and testing can begin. The single-channel motor controller is ready!

Two-channel motor controller

Used to independently control a pair of motors simultaneously. Power is supplied from a voltage ranging from 2 to 12 volts. The load current is rated up to 1.5A per channel.

The main components of the design are shown in photo.10 and include: two trimming resistors for adjusting the 2nd channel (No. 1) and the 1st channel (No. 2), three two-section screw terminal blocks for output to the 2nd motor (No. 3), for output to the 1st motor (No. 4) and for input (No. 5).

Note:1 Installation of screw terminal blocks is optional. Using a thin stranded mounting wire, you can connect the motor and power source directly.

Principle of operation

The circuit of a two-channel regulator is identical to the electrical circuit of a single-channel regulator. Consists of two parts (Fig. 2). The main difference: the variable resistance resistor is replaced with a trimming resistor. The rotation speed of the shafts is set in advance.

Note.2. To quickly adjust the rotation speed of the motors, the trimming resistors are replaced using a mounting wire with variable resistance resistors with the resistance values ​​indicated in the diagram.

Materials and details

You will need a printed circuit board measuring 30x30 mm, made of a fiberglass sheet foiled on one side with a thickness of 1-1.5 mm. Table 2 provides a list of radio components.

Build process

After downloading the archive file located at the end of the article, you need to unzip it and print it. The regulator drawing for thermal transfer (termo2 file) is printed on glossy paper, and the installation drawing (montag2 file) is printed on a white office sheet (A4 format).

The circuit board drawing is glued to the current-carrying tracks on the opposite side of the printed circuit board. Form holes on the installation drawing in the mounting locations. The installation drawing is attached to the printed circuit board with dry glue, and the holes must match. The KT815 transistor is being pinned. To check, you need to temporarily connect inputs 1 and 2 with a mounting wire.

Any of the inputs is connected to the pole of the power source (a 9-volt battery is shown in the example). The negative of the power supply is attached to the center of the terminal block. It is important to remember: the black wire is “-” and the red wire is “+”.

The motors must be connected to two terminal blocks, and the desired speed must also be set. After successful testing, you need to remove the temporary connection of the inputs and install the device on the robot model. The two-channel motor controller is ready!

THE ARCHIVE contains the necessary diagrams and drawings for the work. The emitters of the transistors are marked with red arrows.

DC motor speed controller diagram

The DC motor speed controller circuit operates on the principles of pulse width modulation and is used to change the speed of a 12 volt DC motor. Regulating the engine shaft speed using pulse-width modulation gives greater efficiency than simply changing the DC voltage supplied to the engine, although we will also consider these schemes

DC motor speed controller circuit for 12 volts

The motor is connected in a circuit to a field-effect transistor which is controlled by pulse-width modulation carried out on the NE555 timer chip, which is why the circuit turned out to be so simple.

The PWM controller is implemented using a conventional pulse generator on an astable multivibrator, generating pulses with a repetition rate of 50 Hz and built on the popular NE555 timer. The signals coming from the multivibrator create a bias field at the gate of the field-effect transistor. The duration of the positive pulse is adjusted using variable resistance R2. The longer the duration of the positive pulse arriving at the gate of the field-effect transistor, the greater the power supplied to the DC motor. And vice versa, the shorter the pulse duration, the weaker the electric motor rotates. This circuit works great on a 12 volt battery.

DC motor speed control circuit for 6 volts

The speed of the 6 volt motor can be adjusted within 5-95%

Engine speed controller on PIC controller

Speed ​​control in this circuit is achieved by applying voltage pulses of varying duration to the electric motor. For these purposes, PWM (pulse width modulators) are used. In this case, pulse width control is provided by a PIC microcontroller. To control the engine rotation speed, two buttons SB1 and SB2, “More” and “Less,” are used. You can change the rotation speed only when the “Start” toggle switch is pressed. The pulse duration varies, as a percentage of the period, from 30 to 100%.

As a voltage stabilizer for the PIC16F628A microcontroller, a three-pin KR1158EN5V stabilizer is used, which has a low input-output voltage drop, only about 0.6V. The maximum input voltage is 30V. All this allows the use of motors with voltages from 6V to 27V. The KT829A composite transistor is used as a power switch, which is preferably installed on a radiator.

The device is assembled on a printed circuit board measuring 61 x 52 mm. You can download the PCB drawing and firmware file from the link above. (See folder in the archive 027-el)

New on the site

>

Most popular