Домой Ходовая Пример расчета энергии вертикальных колебаний пружинного маятника. Период колебания пружинного маятника. Распространение волн в упругой среде

Пример расчета энергии вертикальных колебаний пружинного маятника. Период колебания пружинного маятника. Распространение волн в упругой среде

Пружинный маятник представляет собой материальную точку массой , прикрепленную к абсолютно упругой невесомой пружине с жесткостью . Различают два наиболее простых случая: горизонтальный (рис.15,а ) и вертикальный (рис.15, б ) маятники.

а) Горизонтальный маятник (рис. 15,а). При смещении груза
из положения равновесия на величину на него действует в горизонтальном направлениивозвращающая упругая сила
(закон Гука).

Предполагается, что горизонтальная опора, по которой скользит груз
при своих колебаниях, абсолютно гладкая (трения нет).

б) Вертикальный маятник (рис.15, б ). Положение равновесия в этом случае характеризуется условием:

где - величина упругой силы, действующей на груз
при статическом растяжении пружины на под действием силы тяжести груза
.

а

Рис.15. Пружинный маятник: а – горизонтальный и б – вертикальный

Если растянуть пружину и отпустить груз, то он начнет совершать вертикальные колебания. Если смещение в какой-то момент времени будет
, то сила упругости запишется теперь как
.

В обоих рассмотренных случаях пружинный маятник совершает гармонические колебания с периодом

(27)

и циклической частотой

. (28)

На примере рассмотрения пружинного маятника можно сделать вывод о том, что гармонические колебания – это движение, вызванное силой, возрастающей пропорционально смещению . Таким образом, если возвращающая сила по виду напоминает закон Гука
(она получила название квазиупругой силы ), то система должна совершать гармонические колебания. В момент прохождения положения равновесия на тело не действует возвращающая сила, однако, тело по инерции проскакивает положение равновесия и возвращающая сила меняет направление на противоположное.

Математический маятник

Рис.16. Математический маятник

Математический маятник представляет собой идеализированную систему в виде материальной точки, подвешенной на невесомой нерастяжимой нити длиной , которая совершает малые колебания под действием силы тяжести (рис. 16).

Колебания такого маятника при малых углах отклонения
(не превышающих 5º) можно считать гармоническими, и циклическая частота математического маятника:

, (29)

а период:

. (30)

2.3. Энергия тела при гармонических колебаниях

Энергия, сообщенная колебательной системе при начальном толчке, будет периодически преобразовываться: потенциальная энергия деформированной пружины будет переходить в кинетическую энергию движущегося груза и обратно.

Пусть пружинный маятник совершает гармонические колебания с начальной фазой
, т.е.
(рис.17).

Рис.17. Закон сохранения механической энергии

при колебаниях пружинного маятника

При максимальном отклонении груза от положения равновесия полная механическая энергия маятника (энергия деформированной пружины с жесткостью ) равна
. При прохождении положения равновесия (
) потенциальная энергия пружины станет равной нулю, и полная механическая энергия колебательной системы определится как
.

На рис.18 представлены графики зависимостей кинетической, потенциальной и полной энергии в случаях, когда гармонические колебания описываются тригонометрическими функциями синуса (пунктирная линия) или косинуса (сплошная линия).

Рис.18. Графики временной зависимости кинетической

и потенциальной энергии при гармонических колебаниях

Из графиков (рис.18) следует, что частота изменения кинетической и потенциальной энергии в два раза выше собственной частоты гармонических колебаний.

10.4. Закон сохранения энергии при гармонических колебаниях

10.4.1. Сохранение энергии при механических гармонических колебаниях

Сохранение энергии при колебаниях математического маятника

При гармонических колебаниях полная механическая энергия системы сохраняется (остается постоянной).

Полная механическая энергия математического маятника

E = W k + W p ,

где W k - кинетическая энергия, W k = = mv 2 /2; W p - потенциальная энергия, W p = mgh ; m - масса груза; g - модуль ускорения свободного падения; v - модуль скорости груза; h - высота подъема груза над положением равновесия (рис. 10.15).

При гармонических колебаниях математический маятник проходит ряд последовательных состояний, поэтому целесообразно рассмотреть энергию математического маятника в трех положениях (см. рис. 10.15):

Рис. 10.15

1) в положении равновесия

потенциальная энергия равна нулю; полная энергия совпадает с максимальной кинетической энергией:

E = W k max ;

2) в крайнем положении (2 ) тело поднято над исходным уровнем на максимальную высоту h max , поэтому потенциальная энергия также максимальна:

W p max = m g h max ;

кинетическая энергия равна нулю; полная энергия совпадает с максимальной потенциальной энергией:

E = W p max ;

3) в промежуточном положении (3 ) тело обладает мгновенной скоростью v и поднято над исходным уровнем на некоторую высоту h , поэтому полная энергия представляет собой сумму

E = m v 2 2 + m g h ,

где mv 2 /2 - кинетическая энергия; mgh - потенциальная энергия; m - масса груза; g - модуль ускорения свободного падения; v - модуль скорости груза; h - высота подъема груза над положением равновесия.

При гармонических колебаниях математического маятника полная механическая энергия сохраняется:

E = const.

Значения полной энергии математического маятника в трех его положениях отражены в табл. 10.1.

Положение W p W k E = W p + W k
1 Равновесие 0 m v max 2 / 2 m v max 2 / 2
2 Крайнее mgh max 0 mgh max
3 Промежуточное (мгновенное) mgh mv 2 /2 mv 2 /2 + mgh

Значения полной механической энергии, представленные в последнем столбце табл. 10.1, имеют равные значения для любых положений маятника, что является математическим выражением :

m v max 2 2 = m g h max ;

m v max 2 2 = m v 2 2 + m g h ;

m g h max = m v 2 2 + m g h ,

где m - масса груза; g - модуль ускорения свободного падения; v - модуль мгновенной скорости груза в положении 3 ; h - высота подъема груза над положением равновесия в положении 3 ; v max - модуль максимальной скорости груза в положении 1 ; h max - максимальная высота подъема груза над положением равновесия в положении 2 .

Угол отклонения нити математического маятника от вертикали (рис. 10.15) определяется выражением

cos α = l − h l = 1 − h l ,

где l - длина нити; h - высота подъема груза над положением равновесия.

Максимальный угол отклонения α max определяется максимальной высотой подъема груза над положением равновесия h max:

cos α max = 1 − h max l .

Пример 11. Период малых колебаний математического маятника равен 0,9 с. На какой максимальный угол от вертикали будет отклоняться нить, если, проходя положение равновесия, шарик движется со скоростью, равной 1,5 м/с? Трение в системе отсутствует.

Решение . На рисунке показаны два положения математического маятника:

  • положение равновесия 1 (характеризуется максимальной скоростью шарика v max);
  • крайнее положение 2 (характеризуется максимальной высотой подъема шарика h max над положением равновесия).

Искомый угол определяется равенством

cos α max = l − h max l = 1 − h max l ,

где l - длина нити маятника.

Максимальную высоту подъема шарика маятника над положением равновесия найдем из закона сохранения полной механической энергии.

Полная энергия маятника в положении равновесия и в крайнем положении определяется следующими формулами:

  • в положении равновесия -

E 1 = m v max 2 2 ,

где m - масса шарика маятника; v max - модуль скорости шарика в положении равновесия (максимальная скорость), v max = 1,5 м/с;

  • в крайнем положении -

E 2 = mgh max ,

где g - модуль ускорения свободного падения; h max - максимальная высота подъема шарика над положением равновесия.

Закон сохранения полной механической энергии:

m v max 2 2 = m g h max .

Выразим отсюда максимальную высоту подъема шарика над положением равновесия:

h max = v max 2 2 g .

Длину нити определим из формулы для периода колебаний математического маятника

T = 2 π l g ,

т.е. длина нити

l = T 2 g 4 π 2 .

Подставим h max и l в выражение для косинуса искомого угла:

cos α max = 1 − 2 π 2 v max 2 g 2 T 2

и произведем вычисление с учетом приблизительного равенства π 2 = 10:

cos α max = 1 − 2 ⋅ 10 ⋅ (1,5) 2 10 2 ⋅ (0,9) 2 = 0,5 .

Отсюда следует, что максимальный угол отклонения составляет 60°.

Строго говоря, при угле 60° колебания шарика не являются малыми и пользоваться стандартной формулой для периода колебаний математического маятника неправомерно.

Сохранение энергии при колебаниях пружинного маятника

Полная механическая энергия пружинного маятника складывается из кинетической энергии и потенциальной энергии:

E = W k + W p ,

где W k - кинетическая энергия, W k = mv 2 /2; W p - потенциальная энергия, W p = k (Δx ) 2 /2; m - масса груза; v - модуль скорости груза; k - коэффициент жесткости (упругости) пружины; Δx - деформация (растяжение или сжатие) пружины (рис. 10.16).

В Международной системе единиц энергия механической колебательной системы измеряется в джоулях (1 Дж).

При гармонических колебаниях пружинный маятник проходит ряд последовательных состояний, поэтому целесообразно рассмотреть энергию пружинного маятника в трех положениях (см. рис. 10.16):

1) в положении равновесия (1 ) скорость тела имеет максимальное значение v max , поэтому кинетическая энергия также максимальна:

W k max = m v max 2 2 ;

потенциальная энергия пружины равна нулю, так как пружина не деформирована; полная энергия совпадает с максимальной кинетической энергией:

E = W k max ;

2) в крайнем положении (2 ) пружина имеет максимальную деформацию (Δx max), поэтому потенциальная энергия также имеет максимальное значение:

W p max = k (Δ x max) 2 2 ;

кинетическая энергия тела равна нулю; полная энергия совпадает с максимальной потенциальной энергией:

E = W p max ;

3) в промежуточном положении (3 ) тело обладает мгновенной скоростью v , пружина имеет в этот момент некоторую деформацию (Δx ), поэтому полная энергия представляет собой сумму

E = m v 2 2 + k (Δ x) 2 2 ,

где mv 2 /2 - кинетическая энергия; k (Δx ) 2 /2 - потенциальная энергия; m - масса груза; v - модуль скорости груза; k - коэффициент жесткости (упругости) пружины; Δx - деформация (растяжение или сжатие) пружины.

При смещении груза пружинного маятника от положения равновесия на него действует возвращающая сила , проекция которой на направление движения маятника определяется формулой

F x = −kx ,

где x - смещение груза пружинного маятника от положения равновесия, x = ∆x , ∆x - деформация пружины; k - коэффициент жесткости (упругости) пружины маятника.

При гармонических колебаниях пружинного маятника полная механическая энергия сохраняется:

E = const.

Значения полной энергии пружинного маятника в трех его положениях отражены в табл. 10.2.

Положение W p W k E = W p + W k
1 Равновесие 0 m v max 2 / 2 m v max 2 / 2
2 Крайнее k (Δx max) 2 /2 0 k (Δx max) 2 /2
3 Промежуточное (мгновенное) k (Δx ) 2 /2 mv 2 /2 mv 2 /2 + k (Δx ) 2 /2

Значения полной механической энергии, представленные в последнем столбце таблицы, имеют равные значения для любых положений маятника, что является математическим выражением закона сохранения полной механической энергии :

m v max 2 2 = k (Δ x max) 2 2 ;

m v max 2 2 = m v 2 2 + k (Δ x) 2 2 ;

k (Δ x max) 2 2 = m v 2 2 + k (Δ x) 2 2 ,

где m - масса груза; v - модуль мгновенной скорости груза в положении 3 ; Δx - деформация (растяжение или сжатие) пружины в положении 3 ; v max - модуль максимальной скорости груза в положении 1 ; Δx max - максимальная деформация (растяжение или сжатие) пружины в положении 2 .

Пример 12. Пружинный маятник совершает гармонические колебания. Во сколько раз его кинетическая энергия больше потенциальной в тот момент, когда смещение тела из положения равновесия составляет четверть амплитуды?

Решение . Сравним два положения пружинного маятника:

  • крайнее положение 1 (характеризуется максимальным смещением груза маятника от положения равновесия x max);
  • промежуточное положение 2 (характеризуется промежуточными значениями смещения от положения равновесия x и скорости v →).

Полная энергия маятника в крайнем и промежуточном положениях определяется следующими формулами:

  • в крайнем положении -

E 1 = k (Δ x max) 2 2 ,

где k - коэффициент жесткости (упругости) пружины; ∆x max - амплитуда колебаний (максимальное смещение от положения равновесия), ∆x max = A ;

  • в промежуточном положении -

E 2 = k (Δ x) 2 2 + m v 2 2 ,

где m - масса груза маятника; ∆x - смещение груза от положения равновесия, ∆x = A /4.

Закон сохранения полной механической энергии для пружинного маятника имеет следующий вид:

k (Δ x max) 2 2 = k (Δ x) 2 2 + m v 2 2 .

Разделим обе части записанного равенства на k (∆x ) 2 /2:

(Δ x max Δ x) 2 = 1 + m v 2 2 ⋅ 2 k Δ x 2 = 1 + W k W p ,

где W k - кинетическая энергия маятника в промежуточном положении, W k = mv 2 /2; W p - потенциальная энергия маятника в промежуточном положении, W p = k (∆x ) 2 /2.

Выразим из уравнения искомое отношение энергий:

W k W p = (Δ x max Δ x) 2 − 1

и рассчитаем его значение:

W k W p = (A A / 4) 2 − 1 = 16 − 1 = 15 .

В указанный момент времени отношение кинетической и потенциальной энергий маятника равно 15.

Определение

Частота колебаний ($\nu$) является одним из параметров, которые характеризуют колебания Это величина обратная периоду колебаний ($T$):

\[\nu =\frac{1}{T}\left(1\right).\]

Таким образом, частотой колебаний называют физическую величину, равную числу повторений колебаний за единицу времени.

\[\nu =\frac{N}{\Delta t}\left(2\right),\]

где $N$ - число полных колебательных движений; $\Delta t$ - время, за которые произошли данные колебания.

Циклическая частота колебаний (${\omega }_0$) связана с частотой $\nu $ формулой:

\[\nu =\frac{{\omega }_0}{2\pi }\left(3\right).\]

Единицей измерения частоты в Международной системе единиц (СИ) является герц или обратная секунда:

\[\left[\nu \right]=с^{-1}=Гц.\]

Пружинный маятник

Определение

Пружинным маятником называют систему, которая состоит из упругой пружины, к которой прикреплен груз.

Допустим, что масса груза равна $m$, коэффициент упругости пружины $k$. Масса пружины в таком маятнике обычно не учитывается. Если рассматривать горизонтальные движения груза (рис.1), то он движется под действием силы упругости, если систему вывели из состояния равновесия и предоставили самой себе. При этом часто считают, что силы трения можно не учитывать.

Уравнения колебаний пружинного маятника

Пружинный маятник, который совершает свободные колебания - это пример гармонического осциллятора. Пусть он выполняет колебания вдоль оси X. Если колебания малые, выполняется закон Гука, то уравнение движения груза запишем как:

\[\ddot{x}+{\omega }^2_0x=0\left(4\right),\]

где ${\omega }^2_0=\frac{k}{m}$ - циклическая частота колебаний пружинного маятника. Решение уравнения (4) это функция синуса или косинуса вида:

где ${\omega }_0=\sqrt{\frac{k}{m}}>0$- циклическая частота колебаний пружинного маятника, $A$ - амплитуда колебаний; ${(\omega }_0t+\varphi)$ - фаза колебаний; $\varphi $ и ${\varphi }_1$ - начальные фазы колебаний.

Частота колебаний пружинного маятника

Из формулы (3) и ${\omega }_0=\sqrt{\frac{k}{m}}$, следует, что частота колебаний пружинного маятника равна:

\[\nu =\frac{1}{2\pi }\sqrt{\frac{k}{m}}\ \left(6\right).\]

Формула (6) справедлива в случае, если:

  • пружина в маятнике считается невесомой;
  • груз, прикрепленный к пружине, является абсолютно твердым телом;
  • крутильные колебания отсутствуют.

Выражение (6) показывает, что частота колебаний пружинного маятника увеличивается с уменьшением массы груза и увеличением коэффициента упругости пружины. Частота колебаний пружинного маятника не зависит от амплитуды. Если колебания не являются малыми, сила упругости пружины не подчиняется закону Гука, то появляется зависимость частоты колебаний от амплитуды.

Примеры задач с решением

Пример 1

Задание. Период колебаний пружинного маятника составляет $T=5\cdot {10}^{-3}с$. Чему равна частота колебаний в этом случае? Какова циклическая частота колебаний этого груза?

Решение. Частота колебаний - это величина обратная периоду колебаний, следовательно, для решения задачи достаточно воспользоваться формулой:

\[\nu =\frac{1}{T}\left(1.1\right).\]

Вычислим искомую частоту:

\[\nu =\frac{1}{5\cdot {10}^{-3}}=200\ \left(Гц\right).\]

Циклическая частота связана с частотой $\nu $ как:

\[{\omega }_0=2\pi \nu \ \left(1.2\right).\]

Вычислим циклическую частоту:

\[{\omega }_0=2\pi \cdot 200\approx 1256\ \left(\frac{рад}{с}\right).\]

Ответ. $1)\ \nu =200$ Гц. 2) ${\omega }_0=1256\ \frac{рад}{с}$

Пример 2

Задание. Массу груза, висящего на упругой пружине (рис.2), увеличивают на величину $\Delta m$, при этом частота уменьшается в $n$ раз. Какова масса первого груза?

\[\nu =\frac{1}{2\pi }\sqrt{\frac{k}{m}}\ \left(2.1\right).\]

Для первого груза частота будет равна:

\[{\nu }_1=\frac{1}{2\pi }\sqrt{\frac{k}{m}}\ \left(2.2\right).\]

Для второго груза:

\[{\nu }_2=\frac{1}{2\pi }\sqrt{\frac{k}{m+\Delta m}}\ \left(2.2\right).\]

По условию задачи ${\nu }_2=\frac{{\nu }_1}{n}$, найдем отношение $\frac{{\nu }_1}{{\nu }_2}:\frac{{\nu }_1}{{\nu }_2}=\sqrt{\frac{k}{m}\cdot \frac{m+\Delta m}{k}}=\sqrt{1+\frac{\Delta m}{m}}=n\ \left(2.3\right).$

Получим из уравнения (2.3) искомую массу груза. Для этого обе части выражения (2.3) возведем в квадрат и выразим $m$:

Ответ. $m=\frac{\Delta m}{n^2-1}$

Физическую систему (тело), в которой при отклонении от положения равновесия возникают и существуют колебания, называют колебательной системой .

Рассмотрим простейшие механические колебательные системы: пружинный и математический маятники.

Пружинный маятник

  • Пружинный маятник - это колебательная система, состоящая из материальной точки массой m и пружины.

Различают горизонтальный пружинный маятник (рис. 1, а) и вертикальный (рис. 1, б).

Mex-majat-02.swf б Рис. 1.

Период колебаний пружинного маятника можно найти по формуле

\(T=2\pi \cdot \sqrt{\frac{m}{k}},\)

где k - коэффициент жесткости пружины маятника. Как следует из полученной формулы, период колебаний пружинного маятника не зависит от амплитуды колебаний (в пределах выполнимости закона Гука).

  • Свойство независимости периода колебаний маятника от амплитуды, открытое Галилеем, называется изохронностью (от греческих слов ίσος - равный и χρόνος -время).

Математический маятник

Рассмотрим простой маятник - шарик, подвешенный на длинной прочной нити. Такой маятник называется физический .

Если размеры шарика много меньше длины нити, то этими размерами можно пренебречь и рассматривать шарик как материальную точку. Растяжением нити также можно пренебречь, так как оно очень мало. Если масса нити во много раз меньше массы шарика, то массой нити также можно пренебречь. В этом случае мы получаем модель маятника, которая называется математическим маятником.

  • Математическим маятником называется, материальная точка массой m, подвешенная на невесомой нерастяжимой нити длиной l в поле силы тяжести (или других сил) (рис. 2).
Mex-majat-03.swf Рис. 2.

Галилео Галилей экспериментально установил, что период колебаний математического маятника в поле силы тяжести не зависит от его массы и амплитуды колебаний (угла начального отклонения). Он установил также, что период колебаний прямо пропорционален \(\sqrt{l}\).

Период малых колебаний математического маятника в поле силы тяжести Земли определяется по формуле Гюйгенса:

\(T=2\pi \cdot \sqrt{\frac{l}{g}}.\)

При углах отклонения математического маятника α < 20° погрешность расчета периода по формуле Гюйгенса не превышает 1%.

В общем случае, когда маятник находится в однородных полях нескольких сил, то для определения периода колебаний следует ввести «эффективное ускорение » g *, характеризующее результирующее действие этих полей и период колебаний маятника будет определяться по формуле

\(T=2\pi \cdot \sqrt{\frac{l}{g*}}.\)

*Вывод формул

*Пружинный маятник

На груз m горизонтального пружинного маятника действуют сила тяжести (m⋅g ), сила реакции опоры (N ) и сила упругости пружины (F ynp ) (рис. 3, первый две силы на рис. а не указаны). Запишем второй закон Ньютона для случая, изображенного на рис. 3, б

\(m\cdot \vec{a} = \vec{F}_{ynp} + m\cdot \vec{g}+\vec{N},\)

0Х \ или \(m\cdot a_{x} +k\cdot x=0.\)

mex-majat-05.swf а (материал с сайта science.up-life.ru)

Рис. 3.

Запишем это уравнение в форме аналогичной уравнению движения гармонического осциллятора

\(a_{x} + \frac{k}{m} \cdot x = 0.\)

Сравнивая полученное выражение с уравнением гармонических колебаний

\(a_{x} (t) + \omega^{2} \cdot x(t) = 0,\)

находим циклическую частоту колебаний пружинного маятника

\(\omega = \sqrt{\frac{k}{m}}.\)

Тогда период колебаний пружинного маятника будет равен:

\(T=\frac{2\pi }{\omega } = 2\pi \cdot \sqrt{\frac{m}{k}}.\)

*Математический маятник

На груз m математического маятника действуют сила тяжести (m⋅g ) и сила упругости нити (F ynp ) (сила натяжения) (рис. 4). Ось 0Х направим вдоль касательной к траектории движения вверх. Запишем второй закон Ньютона для случая, изображенного на рис. 4, б

\(m\cdot \vec{a} = \vec{F}_{ynp} + m\cdot \vec{g},\)

Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия.

Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению (см. §2.1):

Силы любой другой физической природы, удовлетворяющие этому условию, называются квазиупругими .

Таким образом, груз некоторой массы m , прикрепленный к пружине жесткости k , второй конец которой закреплен неподвижно (рис. 2.2.1), составляют систему, способную совершать в отсутствие трения свободные гармонические колебания. Груз на пружине называют линейным гармоническим осциллятором .

Круговая частота ω 0 свободных колебаний груза на пружине находится из второго закона Ньютона :

При горизонтальном расположении системы пружина-груз сила тяжести, приложенная к грузу, компенсируется силой реакции опоры. Если же груз подвешен на пружине, то сила тяжести направлена по линии движения груза. В положении равновесия пружина растянута на величину x 0 , равную

Поэтому второй закон Ньютона для груза на пружине может быть записан в виде

Уравнение (*) называется уравнением свободных колебаний . Следует обратить внимание на то, что физические свойства колебательной системы определяют только собственную частоту колебаний ω 0 или период T . Такие параметры процесса колебаний, как амплитуда x m и начальная фаза φ 0 , определяются способом, с помощью которого система была выведена из состояния равновесия в начальный момент времени.


Если, например, груз был смещен из положения равновесия на расстояние Δl и затем в момент времени t = 0 отпущен без начальной скорости, то x m = Δl , φ 0 = 0.

Если же грузу, находившемуся в положении равновесия, с помощью резкого толчка была сообщена начальная скорость ± υ 0 , то ,

Таким образом, амплитуда x m свободных колебаний и его начальная фаза φ 0 определяются начальными условиями .

Существует много разновидностей механических колебательных систем, в которых используются силы упругих деформаций. На рис. 2.2.2 показан угловой аналог линейного гармонического осциллятора. Горизонтально расположенный диск висит на упругой нити, закрепленной в его центре масс. При повороте диска на угол θ возникает момент сил M упр упругой деформации кручения:

где I = I C - момент инерции диска относительно оси, проходящий через центр масс, ε - угловое ускорение.

По аналогии с грузом на пружине можно получить:


Свободные колебания. Математический маятник

Математическим маятником называют тело небольших размеров, подвешенное на тонкой нерастяжимой нити, масса которой пренебрежимо мала по сравнению с массой тела. В положении равновесия, когда маятник висит по отвесу, сила тяжести уравновешивается силой натяжения нити . При отклонении маятника из положения равновесия на некоторый угол φ появляется касательная составляющая силы тяжести F τ = -mg sin φ (рис. 2.3.1). Знак «минус» в этой формуле означает, что касательная составляющая направлена в сторону, противоположную отклонению маятника.

Если обозначить через x линейное смещение маятника от положения равновесия по дуге окружности радиуса l , то его угловое смещение будет равно φ = x / l . Второй закон Ньютона, записанный для проекций векторов ускорения и силы на направление касательной, дает:

Это соотношение показывает, что математический маятник представляет собой сложную нелинейную систему, так как сила, стремящаяся вернуть маятник в положение равновесия, пропорциональна не смещению x , а

Только в случае малых колебаний , когда приближенно можно заменить на математический маятник является гармоническим осциллятором, т. е. системой, способной совершать гармонические колебания. Практически такое приближение справедливо для углов порядка 15-20°; при этом величина отличается от не более чем на 2 %. Колебания маятника при больших амплитудах не являются гармоническими.

Для малых колебаний математического маятника второй закон Ньютона записывается в виде

Эта формула выражает собственную частоту малых колебаний математического маятника .

Следовательно,

Любое тело, насаженное на горизонтальную ось вращения, способно совершать в поле тяготения свободные колебания и, следовательно, также является маятником. Такой маятник принято называть физическим (рис. 2.3.2). Он отличается от математического только распределением масс. В положении устойчивого равновесия центр масс C физического маятника находится ниже оси вращения О на вертикали, проходящей через ось. При отклонении маятника на угол φ возникает момент силы тяжести, стремящийся возвратить маятник в положение равновесия:

и второй закон Ньютона для физического маятника принимает вид (см. §1.23)

Здесь ω 0 - собственная частота малых колебаний физического маятника .

Следовательно,

Поэтому уравнение, выражающее второй закон Ньютона для физического маятника, можно записать в виде

Окончательно для круговой частоты ω 0 свободных колебаний физического маятника получается выражение:


Превращения энергии при свободных механических колебаниях

При свободных механических колебаниях кинетическая и потенциальная энергии периодически изменяются. При максимальном отклонении тела от положения равновесия его скорость, а следовательно, и кинетическая энергия обращаются в нуль. В этом положении потенциальная энергия колеблющегося тела достигает максимального значения. Для груза на пружине потенциальная энергия - это энергия упругих деформаций пружины. Для математического маятника - это энергия в поле тяготения Земли.

Когда тело при своем движении проходит через положение равновесия, его скорость максимальна. Тело проскакивает положение равновесия по закону инерции. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией. Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии. При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и т. д.

Таким образом, при гармонических колебаниях происходит периодическое превращение кинетической энергии в потенциальную и наоборот.

Если в колебательной системе отсутствует трение, то полная механическая энергия при свободных колебаниях остается неизменной.

Для груза на пружине (см. §2.2):

В реальных условиях любая колебательная система находится под воздействием сил трения (сопротивления). При этом часть механической энергии превращается во внутреннюю энергию теплового движения атомов и молекул, и колебания становятся затухающими (рис. 2.4.2).

Скорость затухания колебаний зависит от величины сил трения. Интервал времени τ, в течении которого амплитуда колебаний уменьшается в e ≈ 2,7 раз, называется временем затухания .

Частота свободных колебаний зависит от скорости затухания колебаний. При возрастании сил трения собственная частота уменьшается. Однако, изменение собственной частоты становится заметным лишь при достаточно больших силах трения, когда собственные колебания быстро затухают.

Важной характеристикой колебательной системы, совершающей свободные затухающие колебания, является добротность Q . Этот параметр определяется как число N полных колебаний, совершаемых системой за время затухания τ, умноженное на π:

Таким образом, добротность характеризует относительную убыль энергии колебательной системы из-за наличия трения на интервале времени, равном одному периоду колебаний.

Вынужденные колебания. Резонанс. Автоколебания

Колебания, совершающиеся под воздействием внешней периодической силы, называются вынужденными .

Внешняя сила совершает положительную работу и обеспечивает приток энергии к колебательной системе. Она не дает колебаниям затухать, несмотря на действие сил трения.

Периодическая внешняя сила может изменяться во времени по различным законам. Особый интерес представляет случай, когда внешняя сила, изменяющаяся по гармоническому закону с частотой ω, воздействует на колебательную систему, способную совершать собственные колебания на некоторой частоте ω 0 .

Если свободные колебания происходят на частоте ω 0 , которая определяется параметрами системы, то установившиеся вынужденные колебания всегда происходят на частоте ω внешней силы .

После начала воздействия внешней силы на колебательную систему необходимо некоторое время Δt для установления вынужденных колебаний. Время установления по порядку величины равно времени затухания τ свободных колебаний в колебательной системе.

В начальный момент в колебательной системе возбуждаются оба процесса - вынужденные колебания на частоте ω и свободные колебания на собственной частоте ω 0 . Но свободные колебания затухают из-за неизбежного наличия сил трения. Поэтому через некоторое время в колебательной системе остаются только стационарные колебания на частоте ω внешней вынуждающей силы.

Рассмотрим в качестве примера вынужденные колебания тела на пружине (рис. 2.5.1). Внешняя сила приложена к свободному концу пружины. Она заставляет свободный (левый на рис. 2.5.1) конец пружины перемещаться по закону

Если левый конец пружины смещен на расстояние y , а правый - на расстояние x от их первоначального положения, когда пружина была недеформирована, то удлинение пружины Δl равно:

В этом уравнении сила, действующая на тело, представлена в виде двух слагаемых. Первое слагаемое в правой части - это упругая сила, стремящаяся возвратить тело в положение равновесия (x = 0). Второе слагаемое - внешнее периодическое воздействие на тело. Это слагаемое и называют вынуждающей силой .

Уравнению, выражающему второй закон Ньютона для тела на пружине при наличии внешнего периодического воздействия, можно придать строгую математическую форму, если учесть связь между ускорением тела и его координатой: Тогда запишется в виде

Уравнение (**) не учитывает действия сил трения. В отличие от уравнения свободных колебаний (*) (см. §2.2) уравнение вынужденных колебаний (**) содержит две частоты - частоту ω 0 свободных колебаний и частоту ω вынуждающей силы.

Установившиеся вынужденные колебания груза на пружине происходят на частоте внешнего воздействия по закону

x (t ) = x m cos (ωt + θ).

Амплитуда вынужденных колебаний x m и начальная фаза θ зависят от соотношения частот ω 0 и ω и от амплитуды y m внешней силы.

На очень низких частотах, когда ω << ω 0 , движение тела массой m , прикрепленного к правому концу пружины, повторяет движение левого конца пружины. При этом x (t ) = y (t ), и пружина остается практически недеформированной. Внешняя сила приложенная к левому концу пружины, работы не совершает, т. к. модуль этой силы при ω << ω 0 стремится к нулю.

Если частота ω внешней силы приближается к собственной частоте ω 0 , возникает резкое возрастание амплитуды вынужденных колебаний. Это явление называется резонансом . Зависимость амплитуды x m вынужденных колебаний от частоты ω вынуждающей силы называется резонансной характеристикой или резонансной кривой (рис. 2.5.2).

При резонансе амплитуда x m колебания груза может во много раз превосходить амплитуду y m колебаний свободного (левого) конца пружины, вызванного внешним воздействием. В отсутствие трения амплитуда вынужденных колебаний при резонансе должна неограниченно возрастать. В реальных условиях амплитуда установившихся вынужденных колебаний определяется условием: работа внешней силы в течение периода колебаний должна равняться потерям механической энергии за то же время из-за трения. Чем меньше трение (т. е. чем выше добротность Q колебательной системы), тем больше амплитуда вынужденных колебаний при резонансе.

У колебательных систем с не очень высокой добротностью (< 10) резонансная частота несколько смещается в сторону низких частот. Это хорошо заметно на рис. 2.5.2.

Явление резонанса может явиться причиной разрушения мостов, зданий и других сооружений, если собственные частоты их колебаний совпадут с частотой периодически действующей силы, возникшей, например, из-за вращения несбалансированного мотора.

Вынужденные колебания - это незатухающие колебания. Неизбежные потери энергии на трение компенсируются подводом энергии от внешнего источника периодически действующей силы. Существуют системы, в которых незатухающие колебания возникают не за счет периодического внешнего воздействия, а в результате имеющейся у таких систем способности самой регулировать поступление энергии от постоянного источника. Такие системы называются автоколебательными , а процесс незатухающих колебаний в таких системах - автоколебаниями . В автоколебательной системе можно выделить три характерных элемента - колебательная система, источник энергии и устройство обратной связи между колебательной системой и источником. В качестве колебательной системы может быть использована любая механическая система, способная совершать собственные затухающие колебания (например, маятник настенных часов).

Источником энергии может служить энергия деформация пружины или потенциальная энергия груза в поле тяжести. Устройство обратной связи представляет собой некоторый механизм, с помощью которого автоколебательная система регулирует поступление энергии от источника. На рис. 2.5.3 изображена схема взаимодействия различных элементов автоколебательной системы.

Примером механической автоколебательной системы может служить часовой механизм с анкерным ходом (рис. 2.5.4). Ходовое колесо с косыми зубьями жестко скреплено с зубчатым барабаном, через который перекинута цепочка с гирей. На верхнем конце маятника закреплен анкер (якорек) с двумя пластинками из твердого материала, изогнутыми по дуге окружности с центром на оси маятника. В ручных часах гиря заменяется пружиной, а маятник - балансиром - маховичком, скрепленным со спиральной пружиной. Балансир совершает крутильные колебания вокруг своей оси. Колебательной системой в часах является маятник или балансир.

Источником энергии - поднятая вверх гиря или заведенная пружина. Устройством, с помощью которого осуществляется обратная связь, является анкер, позволяющий ходовому колесу повернуться на один зубец за один полупериод. Обратная связь осуществляется взаимодействием анкера с ходовым колесом. При каждом колебании маятника зубец ходового колеса толкает анкерную вилку в направлении движения маятника, передавая ему некоторую порцию энергии, которая компенсирует потери энергии на трение. Таким образом, потенциальная энергия гири (или закрученной пружины) постепенно, отдельными порциями передается маятнику.

Механические автоколебательные системы широко распространены в окружающей нас жизни и в технике. Автоколебания совершают паровые машины, двигатели внутреннего сгорания, электрические звонки, струны смычковых музыкальных инструментов, воздушные столбы в трубах духовых инструментов, голосовые связки при разговоре или пении и т. д.

Рисунок 2.5.4. Часовой механизм с маятником.

Новое на сайте

>

Самое популярное