Домой Освещение Основные виды механического движения. Школьная энциклопедия Что такое характер движения в физике

Основные виды механического движения. Школьная энциклопедия Что такое характер движения в физике

Механическое движение

Определение 1

Изменение расположения тела (или его частей) касательно других тел называют механическим движением.

Пример 1

Например, человек, двигающийся на эскалаторе в метро, пребывает в покое касательно самого эскалатора и двигается сравнительно стен туннеля; гора Эльбрус находится в покое условно Земли и движется вместе с Землей относительно Солнца.

Мы видим, что надо указать точку, относительно которой рассматривается перемещение, это именуется телом отсчета. Точка отсчета и система координат, с которой она соединена, а также избранный метод измерения времени составляют концепцию отсчета.

Перемещение тела, где все его точки двигаются одинаково, называется поступательным. Чтобы найти скорость $V$ с которым движется тело, нужно путь $S$ разделить на время $T$.

$ \frac{S}{T} = {V}$

Движение тела вокруг некоторой оси есть вращательное. При таком ходе все точки тела совершают продвижение по местности, центром которых считается эта ось. И хотя колёса делают вращательное движение вокруг своих осей, в то же время происходит поступательное движение вместе с кузовом машины. Значит, сравнительно оси колесо совершает вращательное движение, а касательно дороги – поступательное.

Определение 2

Колебательное движение – такое периодическое перемещение, которое тело совершает по очереди в двух противоположных направлениях. Самый простой пример - маятник в часах.

Поступательное и вращательное – самые простые виды механического передвижения.

Если точка $X$ изменяет свое расположение относительно точки $Y$, то и $Y$ меняет свое положение относительно $X$. Иначе говоря, тела двигаются относительно друг друга. Механическое движение считается относительным - для его описания нужно указать, относительно какой точки оно рассматривается

Простыми видами движения материального тела являются равномерное и прямолинейное передвижения. Равномерным оно является, если модуль вектора скорости не изменяется (направление может меняться).

Движение называется прямолинейным, если курс вектора скорости постоянный (а величина при этом способно изменяться). Траекторией считается прямая линия, на которой находится вектор скорости.

Примеры механического движения мы видим в обыденной жизни. Это проезжающие мимо машины, летящие самолеты, плывущие корабли. Простые примеры мы формируем сами, проходя возле других людей. Каждую секунду наша планета проходит в двух плоскостях: вокруг Солнца и своей оси. И это тоже образцы механического движения.

Разновидности движения

Поступательное движение - автоматическое перемещение твердого тела, при этом любой этап прямой, четко связанный с движущейся точкой, остается синхронным своему изначальному положению.

Важной характеристикой движения тела считается её траектория, представляющая пространственную кривую, которую можно показать в виде сопряженных дуг разного радиуса, исходящего каждый из своего центра. Различного для любых точек тела положение, которого может изменяться с течением времени.

Поступательно двигается кабина лифта или кабинка колеса обозрения. Поступательное движение проходит в 3-х мерном пространстве, но его главная отличительная черта - сохранение параллельности всякого отрезка самому себе, остается в силе.

Период обозначаем буквой $T$. Чтобы найти период обращения, надо время вращения разделить на число оборотов: $\frac{\delta t}{N} = {T}$

Вращательное движение - материальная точка описывает круг. При вращательном процессе совершенно твёрдого тела все его точки описывают круг, которые находятся в параллельных плоскостях. Центры этих окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называются осью вращения.

Ось вращения может быть расположена внутри тела и за ним. Ось вращения в системе бывает подвижной и неподвижной. Например, в системе отсчёта, соединенной с Землей, ось вращения ротора генератора на станции недвижна.

Иногда ось вращения получает сложное вращательное движение - сферическое, когда точки тела двигаются по сферам. Точка передвигается вокруг неподвижной оси, не проходящей через центр тела или вращающуюся материальную точку, такое движение называется круговым.

Характеристики прямолинейного движения: перемещение, скорость, ускорение. Становятся их аналогами при вращательном движении: угловое перемещение, угловая скорость, угловое ускорение :

  • роль передвижения во вращательном процессе имеет угол;
  • величина угла поворота за единицу времени является угловой скоростью;
  • изменение угловой скорости в промежуток времени - это угловое ускорение.

Колебательное движение

Движение в двух противоположных направлениях, колебательное. Раскачивания, которые проходят в замкнутых концепциях называют независимыми или собственными колебаниями. Колыхания, которые происходят под действием внешних сил, называют вынужденными.

Если анализировать раскачивание согласно характеристик, которые изменяются (амплитуда, частота, период и др.), тогда их можно поделить на затухающие, гармонические, нарастающие (а также прямоугольные, сложные, пилообразные).

При свободных колебаниях в настоящих системах всегда происходят утраты энергии. Энергия тратится на работу по преодолению силы сопротивления воздуха. Сила трения уменьшает амплитуды колебаний, и они прекращаются через некоторое время.

Вынужденные раскачивания незатухающие. Поэтому надо пополнять потери энергии за каждый час колебаний. Для этого необходимо действовать на тело время от времени, изменяющейся силой. Вынужденные колыхания происходят с частотой, равной изменениям внешней силы.

Амплитуда принужденных колебаний достигает самого большого значения тогда, когда данный коэффициент такой же, как и частота колебательной системы. Это называется резонансом.

Например, если периодически дергать канат в такт его колебаниям, то мы увидим увеличение амплитуды его раскачивания.

Определение 3

Материальная точка – это тело, величиной которого в определенных условиях можно пренебрегать.

Часто вспоминаемый нами автомобиль возможно принимать за материальную точку сравнительно Земли. Но если люди перемещаются внутри этой машины, то уже нельзя пренебрегать размерами автомобиля.

Когда вы решаете задачи по физике, расценивают движение тела как движение материальной точки, и пользуются такими понятиями, как скорость точки, ускорение материального тела, инерция материальной точки и т.п.

Система отсчёта

Материальная точка перемещается сравнительно инерции иных тел. Тело, согласно отношению к какому рассматривается это автоматическое перемещение, именуется телом отсчёта. Тело отсчета выбирают свободно в зависимости с поставленными заданиями.

С телом отсчёта вяжется система местоположение, что предполагает из себя точку отсчёта (основание координат). Концепция местоположение обладает 1, 2 либо 3 оси в связи с условием перемещения. Состояние точки на линии (1 ось), плоскости (2 оси) либо в месте (3 оси) устанавливают в соответствии с этим одной, 2-мя либо 3-мя координатами.

С целью установления положения тела в пространственной области в любой период времени необходимо установить старт отсчета времени. Устройство для замера времени, система координат, точка отсчета, с которым соединена система координат - это и есть система отсчёта.

Относительно этой системы рассматривается передвижение тела. У одной и той же точки в сравнении с различными телами отсчёта в различных концепциях координат имеют все шансы быть совершенно другие координаты. Система отсчёта также зависит от выбора траектория движения

Разновидности систем отсчёта могут быть разнообразными, например: недвижимая система отсчёта, подвижная система отсчета, инерциальная система отсчета, неинерциальная система отсчёта.

Если положение данного тела относительно окружающих пред-метов с течением времени изменяется, то данное тело движется. Если положение тела остается неизменным, то тело находится в покое. За единицу времени в механике принимается 1 сек. Под промежутком времени подразумевается число t сек, отделяющих два каких-нибудь последовательных явления.

Наблюдая движение какого-нибудь тела, часто можно видеть, что движения различных точек тела различны; так при качении колеса по плоскости центр колеса движется по прямой линии, а точка, лежащая на окружности колеса, описывает кривую (циклоиду) ; пути, пройденные этими двумя точками за одно и то же время (за 1 оборот), также различны. Поэтому изучение движения тела начинают с изучения движения отдельной точки.

Линия, описываемая движущейся точкой в пространстве, называется траекторией этой точки.

Прямолинейным движением точки называется такое движение, траектория которого —прямая линия .

Криволинейное движение — это движение, траектория которого не является прямой линией.

Движение определяется направлением, траекторией и пройденным за определенный промежуток времени (период) путем.

Равномерным движением точки называется такое движение, при котором отношение пройденного пути S к соответствующему промежутку времени сохраняет постоянную величину для любого промежутка времени, т. е.

S/t = const (постоянная величина).(15)

Это постоянное отношение пути ко времени называется скоростью равномерного движения и обозначается буквой v. Таким образом, v= S/t. (16)

Решая уравнение относительно S, получим S = vt , (17)

т. е. величина пути, пройденного точкой при равномерном движении, равна произведению скорости на время. Решая уравнение относительно t, находим, что t = S/v ,(18)

т. е. время, в течение которого точка при равномерном движении проходит данный путь, равно отношению этого пути к скорости движения.

Эти равенства являются основными формулами равномерного движения. По этим формулам определяется одна из трех величин S, t, v, когда две других известны.

Размерность скорости v = длина / время = м/сек.

Неравномерным движением называется такое движение точки, при котором отношение пройденного пути к соответствующему промежутку времени не является постоянной величиной.

При неравномерном движении точки (тела) часто удовлетворяются нахождением средней скорости, которая характеризует быстроту движения за данный промежуток времени, но не дает представления о скорости движения точки в отдельные моменты, т. е. об истинной скорости.

Истинная скорость неравномерного движения — это та скорость, с которой движется точка в данный момент.

Средняя скорость движения точки определяется по формуле (15).

Практически часто удовлетворяются средней скоростью, принимая ее как истинную. Например, скорость стола у продольно-строгального станка постоянная, за исключением моментов начала рабочего и начала холостого ходов, но этими моментами в большинстве случаев пренебрегают.

У поперечно-строгального станка, у которого вращательное движение преобразуется в поступательное кулисным механизмом, скорость ползуна неравномерна. В начале хода она равна нулю, затем возрастает до какой-то наибольшей величины в момент вертикального положения кулисы, после чего начинает уменьшаться и к концу хода становится опять равной нулю. В большинстве случаев при расчетах пользуются средней скоростью v ср ползуна, которую принимают как истинную скорость резания.

Скорость ползуна поперечно-строгального станка с кулисным механизмом можно охарактеризовать как равномерно-переменную.

Равномерно-переменное движение — это движение, при котором за одинаковые промежутки времени скорость увеличивается или уменьшается на одинаковую величину.

Скорость равномерно-переменного движения выражается формулой v = v 0 + at, (19)

где v—скорость равномерно-переменного движения в данный момент, м/сек;

v 0 — скорость в начале движения, м/сек; а — ускорение, м/сек 2 .

Ускорением называется изменение скорости в единицу времени.

Ускорение а имеет размерность скорость / время = м / сек 2 и выражается формулой a = (v-v 0)/t. (20)

При v 0 = 0, a = v/t.

Путь, пройденный при равномерно-переменном движении, выражается формулой S= ((v 0 +v)/2)* t = v 0 t+(at 2)/2. (21)

Поступательным движением твердого тел а называется такое движение, при котором всякая прямая, взятая на этом теле, перемещается параллельно самой себе.

При поступательном движении скорости и ускорения всех точек тела одинаковы и в любой точке являются скоростью и ускорением тела.

Вращательным движением называется такое движение, при котором все точки некоторой прямой линии (оси), взятой в этом теле, остаются неподвижными.

При равномерном вращении в равные промежутки времени тело поворачивается на одинаковые углы. Угловая скорость характеризует величину вращательного движения и обозначается буквой ω (омега).

Связь между угловой скоростью ω и числом оборотов в минуту выражается уравнением: ω =(2πn)/60 = (πn)/30 град/сек. (22)

Вращательное движение является частным случаем криволинейного движения.

Скорость вращательного движения точки направлена по касательной к траектории движения и по величине равна длине дуги, пройденной точкой за соответствующий промежуток времени.

Скорость движения точки вращающегося тела выражается уравнением

v = (2πRn)/(1000*60)= (πDn)/(1000*60) м/сек, (23)

где п — число оборотов в минуту; R — радиус окружности вращения.

Угловое ускорение характеризует увеличение угловой скорости в единицу времени. Обозначается оно буквой ε (эпсилон) и выражается формулой ε =(ω - ω 0) / t. (24)

Подробности Категория: Механика Опубликовано 17.03.2014 18:55 Просмотров: 15751

Механическое движение рассматривают для материальной точки и для твёрдого тела.

Движение материальной точки

Поступательное движение абсолютно твёрдого тела - это механическое движение, в процессе которого любой отрезок прямой, связанный с этим телом, всегда параллелен самому себе в любой момент времени.

Если мысленно соединить прямой две любые точки твёрдого тела, то полученный отрезок всегда будет параллельным себе в процессе поступательного движения.

При поступательном движении все точки тела движутся одинаково. То есть, они проходят одинаковое расстояние за одинаковые промежутки времени и движутся в одном направлении.

Примеры поступательного движения: движение кабины лифта, чашек механических весов, санок, мчащихся с горы, педалей велосипеда, платформы железнодорожного состава, поршней двигателя относительно цилиндров.

Вращательное движение

При вращательном движении все точки физического тела движутся по окружностям. Все эти окружности лежат в плоскостях, параллельных друг другу. А центры вращения всех точек расположены на одной неподвижной прямой, которая называется осью вращения . Окружности, которые описываются точками, лежат в параллельных плоскостях. И эти плоскости перпендикулярны оси вращения.

Вращательное движение встречается очень часто. Так, движение точек на ободе колеса является примером вращательного движения. Вращательное движение описывает пропеллер вентилятора и др.

Вращательное движение характеризуют следующие физические величины: угловая скорость вращения, период вращения, частота вращения, линейная скорость точки.

Угловой скоростью тела при равномерном вращении называют величину, равную отношению угла поворота к промежутку времени, в течение которого этот поворот произошёл.

Время, за которое тело проходит один полный оборот, называется периодом вращения (T) .

Число оборотов, которые тело совершает в единицу времени, называется частотой вращения (f) .

Частота вращения и период связаны между собой соотношением T = 1/f.

Если точка находится на расстоянии R от центра вращения, то её линейная скорость определяется по формуле:

Механическим движением тела (точки) называется изменение его положения в пространстве относительно других тел с течением времени.

Виды движений:

А) Равномерное прямолинейное движение материальной точки: Начальные условия


. Начальные условия



Г) Гармоническое колебательное движение. Важным случаем механического движения являются колебания, при которых параметры движения точки (координаты, скорость, ускорение) повторяются через определенные промежутки времени.

О писания движения . Существуют различные способы описания движения тел. При координатном способе задания положения тела в декартовой системе координат движение материальной точки определяется тремя функциями, выражающими зависимость координат от времени:

x = x (t ), y =у(t ) и z = z (t ) .

Эта зависимость координат от времени называется законом движения (или уравнением движения).

При векторном способе положение точки в пространстве определяется в любой момент времени радиус-вектором r = r (t ) , проведенным из начала координат до точки.

Существует еще один способ определения положения материальной точки в пространстве при заданной траектории ее движения: с помощью криволинейной координаты l (t ) .

Все три способа описания движения материальной точки эквивалентны, выбор любого из них определяется соображениями простоты получаемых уравнений движения и наглядности описания.

Под системой отсчета понимают тело отсчета, которое условно считается неподвижным, систему координат, связанную с телом отсчета, и часы, также связанные с телом отсчета. В кинематике система отсчета выбирается в соответствии с конкретными условиями задачи описания движения тела.

2. Траектория движения. Пройденный путь. Кинематический закон движения.

Линия, по которой движется некоторая точка тела, называется траекторией движения этой точки.

Длина участка траектории, пройденного точкой при ее движении, называется пройденным путем .

Изменение радиус- вектора с течением времени называют кинематическим законом :
При этом координаты точек будут являться координатами по времени:x = x (t ), y = y (t ) и z = z (t ).

При криволинейном движении путь больше модуля перемещения, так как длина дуги всегда больше длины стягивающей её хорды

Вектор, проведенный из начального положения движущейся точки в положение ее в данный момент времени (приращение радиус-вектора точки за рассматриваемый промежуток времени), называется перемещением . Результирующее перемещение равно векторной сумме последовательных перемещений.

При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории, и модуль перемещения равен пройденному пути.

3. Скорость. Средняя скорость. Проекции скорости.

Скорость - быстрота изменения координаты. При движении тела (материальной точки) нас интересует не только его положение в выбранной системе отсчета, но и закон движения, т. е. зависимость радиус-вектора от времени. Пусть моменту времени соответствует радиус-вектордвижущейся точки, а близкому моменту времени- радиус-вектор. Тогда за малый промежуток времени
точка совершит малое перемещение, равное

Для характеристики движения тела вводится понятие средней скорости его движения:
Эта величина является векторной, совпадающей по направлению с вектором
. При неограниченном уменьшенииΔt средняя скорость стремится к предельному значению, которое называется мгновенной ско­ростью :

Проекции скорости.

А) Равномерное прямолинейное движение материальной точки:
Начальные условия

Б) Равноускоренное прямолинейное движение материальной точки:
. Начальные условия

В) Движение тела по дуге окружности с постоянной по модулю скоростью:

Чтобы найти координаты движущегося тела в любой момент времени, нужно знать проекции вектора перемещения на оси координат, а значит, и сам вектор перемещения. Что для этого нужно знать. Ответ зависит от того, какое движение совершает тело.

Рассмотрим сначала самый простой вид движения - прямолинейное равномерное движение .

Движение, при котором тело за любые равные промежутки совершает одинаковые перемещения, называют прямолинейным равномерным движением.

Чтобы найти перемещение тела в равномерном прямолинейном движении за какой-то промежуток времени t , надо знать, какое перемещение совершает тело за единицу времени, поскольку за любую другую единицу времени оно совершает такое же перемещение.

Перемещение, совершаемое за единицу времени, называют скоростью движения тела и обозначают буквой υ . Если перемещение на этом участке обозначить через , а промежуток времени через t , то скорость можно выразить отношением к . Поскольку перемещение - векторная величина, а время - скалярная , то скорость тоже векторная величина. Вектор скорости направлен так же, как и вектор перемещения.

Скоростью равномерного прямолинейного движения тела называют величину, равную отношению перемещения тела к промежутку времени, в течение которого это перемещение произошло:

Таким образом, скорость показывает, какое перемещение совершает тело в единицу времени. Следовательно, чтобы найти перемещение тела, надо знать его скорость . Перемещение тела вычисляется по формуле:

Вектор перемещения направлен так же, как и вектор скорости, время t - величина скалярная.

По формулам, написанным в векторной форме, вычисления вести нельзя, поскольку векторная величина имеет не только численное значение, но и направление. При вычислениях пользуются формулами, в которые входят не векторы, а их проекции на оси координат, так как над проекциями можно производить алгебраические действия.

Поскольку векторы равны, то равны и их проекции на ось X , отсюда:

Теперь можно получить формулу для вычисления координаты x точки в любой момент времени. Нам известно, что

Из этой формулы видно, что при прямолинейном равномерном движении координата тела линейно зависит от времени, а это значит, что с ее помощью можно описать прямолинейное равномерное движение.

Кроме того, из формулы следует, что для нахождения положения тела в любой момент времени при прямолинейном равномерном движении нужно знать начальную координату тела x 0 и проекцию вектора скорости на ось, вдоль которой движется тело.

Необходимо помнить, что в этой формуле v x - проекция вектора скорости, следовательно, как всякая проекция вектора, она может быть положительной и отрицательной.

Прямолинейное равномерное движение встречается редко. Чаще приходится иметь дело с движением, при котором за равные промежутки времени перемещения тела могут быть различными. Это значит, что скорость тела с течением времени как-то изменяется. С переменной скоростью движутся автомобили, поезда, самолеты и т. д., брошенное вверх тело, падающие на Землю тела.

При таком движении для вычисления перемещения формулой пользоваться нельзя, поскольку скорость изменяется во времени и речь уже идет не о какой-то определенной скорости, значение которой можно подставить в формулу. В таких случаях пользуются так называемой средней скоростью, которая выражается формулой:

Средняя скорость показывает, чему равно перемещение, которое тело в среднем совершает за единицу времени.

Однако, при помощи понятия средней скорости основную задачу механики - определить положение тела в любой момент времени - решить нельзя.

Новое на сайте

>

Самое популярное