Домой Ходовая Основная стойка шасси. Система управления передней опорой шасси самолета. Схемы расположения амортизаторов стоек

Основная стойка шасси. Система управления передней опорой шасси самолета. Схемы расположения амортизаторов стоек

Изобретение относится к авиации, в частности к взлетно-посадочным устройствам, и предназначено для управления движением самолета на взлете, посадке и рулении по аэродрому. Целью изобретения является повышение безопасности управления передней опорой шасси самолета. Система управления содержит штурвалы 1 с установленными на них переключателями 21, установленные по правому и левому бортам кабины рукоятки управления 6, колонки которых кинематически соединены между собой и с центрирующим цилиндром 12, педали 2, связанные между собой через проводку 3 и с входными валами датчиков 4 малых углов поворота стойки шасси, задающие датчики 15 больших углов поворота стойки шасси, выход каждого из которых соединен с входом соответствующего блока управления 5. Каждый блок управления 5 связан с соответствующим электрогидравлическим агрегатом управления 22, соединенным с силовым цилиндром 23 механизма поворота 24 колес стойки шасси, связанного с датчиками 25 обратной связи, при этом выходы этих датчиков соединены с соответствующими блоками управления 5. Система снабжена механизмом 18 переключения режимов, кинематически связанным с колонкой одной из рукояток управления, например с колонкой 8 рукоятки 6, и имеющим магнитоуправляемые выключатели, соединенные через две параллельные цепи с переключателем, установленным на штурвале, и механизмом подключения задающих датчиков 15 больших углов поворота стойки шасси, кинематически связанным с колонкой 9 рукоятки 7 и с дополнительным центрирующим цилиндром 17. 5 ил.

Изобретение относится к авиации, а более конкретно к взлетно-посадочным устройствам, и предназначено для управления движением самолета на взлете, посадке и рулении по аэродрому. Известна система управления передней опорой шасси самолета, содержащая штурвалы управления с переключателями, установленные по левому и правому бортам кабины рукоятки управления. Колонки каждой рукоятки кинематически связанные между собой и с центрирующим цилиндром, а также с входными валами соответствующих задающих датчиков больших углов поворота стойки шасси. Система содержит также педали левого и правого пилотов, кинематически связаны между собой и с входными валами задающих датчиков малых углов поворота стойки шасси. При этом выход каждого датчика соединен с соответствующими входами блоков управления. Кроме того, система содержит также датчики обратной связи, входные валы которых кинематически связаны с механизмом поворота колес, а выходные с упомянутым блоком управления. Кроме того, на каждом штурвале установлено по одному трехпозиционному переключателю режимов работы системы, каждый из которых связан с соответствующим ему упомянутым блоком управления, а блоки управления электрически соединены с соответствующим электрогидравлическими агрегатами управления, соединенными с соответствующими силовыми цилиндрами исполнительного механизма поворота колес. Эта система обеспечивает управление самолетом как в режиме руления по аэродрому, так и на режиме взлета и посадки, т.е. обеспечивает управление поворотом стойки шасси на большие и малые углы. Использование трехпозиционного выключателя для переключения режимов работы системы через блок управления на режим "Взлет-посадка", выключенный режим и режим "Руление" заставляет летчика внимательно следить за тем, в какую именно позицию необходимо установить выключатель, особенно на взлетно-посадочных режимах. Это отвлекает летчика, в результате чего снижается безопасность управления передней опорой шасси самолета. Технической задачей изобретения является повышение безопасности управления передней опорой шасси самолета. Это достигается тем, что система управления передней опорой шасси самолета, содержащая штурвалы управления, на которых установлены переключатели, установленные по правому и левому бортам кабины рукоятки управления, колонки которых кинематически соединены между собой и с центрирующим цилиндром, педали управления, также кинематически связанные между собой и с входными валами датчиков малых углов поворота стойки шасси, задающие датчики больших углов поворота стойки шасси, причем выход каждого датчика больших углов поворота соединен с входом соответствующего блока управления, каждый из которых связан с соответствующим электрогидравлическим агрегатом управления, соединенным с силовым цилиндром исполнительного механизма поворота колес, датчики обратной связи, входные валы которых кинематически связаны с механизмом поворота колес, а выходы с блоками управления, она снабжена механизмом переключения режимов, кинематически связанным с колонкой одной из рукояток управления и имеющим магнитоуправляемые выключатели, соединенные через две параллельные цепи включения с переключателем, установленным на штурвале, и механизмом подключения задающих датчиков больших углов поворота стойки шасси, кинематически связанным с колонкой другой рукоятки управления и с дополнительным центрирующим цилиндром. В результате этого летчик пользуется переключателем, установленным на штурвале, только для включения системы, одновременно, при этом включается режим "Взлет-посадка", а для перехода на режим "Руление" он привычно пользуется одной из рукояток, при повороте которых кинематическая связь колонки управления левой рукоятки с механизмом переключения режимов вызывает срабатывание выключателей, соединенных с блоком управления, и система автоматически переключается на этот режим. Таким образом, летчик отвлекается только один раз для включения системы, далее его внимание уже не отвлекается на переключение режимов, что и позволяет повысить безопасность управления передней опорой шасси самолета. На фиг.1 показана функциональная схема предложенной системы управления; на фиг.2 электрическая схема механизма переключения режимов; на фиг.3 - общий вид механизма переключения режимов; на фиг.4 вид А фиг.3; на фиг.5 - механизм подключения задающих датчиков больших углов поворота. Система управления передней опорой шасси самолета содержит штурвалы 1 и педали 2 левого и правого пилотов. Педали 2 через проводку 3 соединены между собой и с входными валами задающих датчиков 4 малых углов поворота стойки шасси, выходы которых соединены с блоками управления 5. Система содержит также рукоятки 6 и 7, колонки 8 и 9 которых через проводку 10 соединены между собой и через качалку 11 с пружинным цилиндром 12. Кроме того, колонка 9 правой рукоятки 7 через зубчатый сектор 13 и рейки 14 соединена с входными валами задающих датчиков 15 больших углов поворота стойки шасси, выходы которых соединены с блоками управления 5, при этом зубчатый сектор 13 через проушина 16 соединен с дополнительным пружинным цилиндром 17, а колонка 8 левой рукоятки 6 соединена с механизмом 18 переключения режимов, имеющим магнитоуправляемые выключатели 19, которые через две параллельные цепи 20 соединены с переключателями 21, установленными на штурвалах 1. Кроме того, выключатели 19 соединены с входом блока управления 5. Каждый из блоков управления 5 соединен с соответствующим электрогидравлическим агрегатом управления 22, а они, в свою очередь, с соответствующими силовыми цилиндрами 23 механизма поворота колес стойки шасси 24, снабженного датчиками 25 обратной связи, выходы которых соединены с соответствующими входами блока управления 5. При этом в механизме 18 переключения режимов на кронштейне 26 установлены магнитоуправляемые выключатели 19 и двуплечие качалки 27. На одном плече каждой качалки с возможностью регулировки установлены шторки 28, а на другой по одному ролику 29 для взаимодействия с соответствующим кулачком 30, неподвижно установленным на колонке 8 левой рукоятки. Качалки 27 соединены между собой пружиной 31, прижимающей ролики к рабочей поверхности кулачка 30. Система работает следующим образом. При взлете и посадке летчик устанавливает переключатель 21 во включенное положение. При этом питание через нормально замкнутые контакты магнитоуправляемых выключателей 19 поступает на блоки управления 5 в канал взлета-посадки. При перемещении летчиком педалей 2 поворачиваются валы задающих датчиков 4 малых углов поворота стойки шасси, с выхода которых поступает сигнал в блок управления 5. Одновременно в блок управления 5 поступают сигналы с датчиков 25 обратной связи, в результате чего в блоке управления 5 возникает сигнал рассогласования, который поступает в электрогидравлические агрегаты управления 22 и, в зависимости от величины этого сигнала происходит соответствующая подача рабочей жидкости в ту или другую полости цилиндров 23, а в результате этого происходит поворот стойки шасси 24 на заданный угол, т.е. до тех пор, пока величины сигналов, поступающих в блок управления 5 с датчиков 4 и с датчиков 24, не сравняются. Для управления самолетом на малых скоростях /посадка, руление/ поворачивают одну из рукояток 6 или 7, при этом колонки 8 и 9 поворачиваются. Вместе с колонкой 8 поворачивается установленный на ней кулачок 30, который входит в соприкосновение с соответствующим роликом 29, в результате чего качалки 27 поворачиваются, шторки 28 расходятся и через нормально разомкнутые контакты магнитоуправляемых выключателей 19 питание поступает в блок управления 5 в канал "руление". Одновременно поворачивается колонка 9 с упором 32 до совмещения с прорезью зубчатого сектора 13. Дальнейший поворот колонки 9 вызывает поворот зубчатого сектора 13 и перемещение реек 14, которые поворачивают валы задающих датчиков 15. Сигналы с датчиков 15 поступают в блоки управления 5. Одновременно в блоки управления 5 поступают сигналы с датчиков 25 обратной связи, в результате чего в блоке управления 5 возникает сигнал рассогласования, который поступает в электрогидравлические агрегаты управления 22 и, в зависимости от величины этого сигнала происходит соответствующая подача рабочей жидкости в ту или другую полости цилиндров 23, а в результате этого происходит поворот стойки шасси 24 на заданный угол. Одновременно с поворотом зубчатого сектора 13 включается в работу соединенный с ним пружинный цилиндр 17, который возвращает валы датчиков 15 в нейтральное положение при возвращении рукояток 6 и 7 в нейтральное положение, которое при отпускании возвращаются в это положение с помощью пружинного цилиндра 12. Подключение в работу датчиков 15 больших углов поворота происходит только после переключения режимов работы системы магнитоуправляемыми выключателями 19 с режима "Взлет-посадка" на режим "Руление" в механизма переключения 18. Это обеспечивается наличием зазора е между упором 32 на колонке 9 и стенками паза, выполненного на зубчатом секторе 13. Таким образом, так как переключатель 21 имеет только две рабочие позиции "Включено" "Выключено", летчик включает его при посадке и больше уже не обращает на него внимание, так как переключение на режим "Руление" осуществляется привычным способом с помощью рукояток 6 или 7. Использование предложенной системы позволит повысить безопасность управления передней опорой самолета как на взлетно посадочных режимах, так и на режимах руления.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Система управления передней опорой шасси самолета, содержащая штурвалы управления с установленными на них переключателями, установленные по правому и левому бортам кабины рукоятки управления, колонки которых кинематически соединены между собой и с центрирующим цилиндром, педали управления, также кинематически связанные между собой и с входными валами датчиков малых углов поворота стойки шасси, задающие датчики больших углов поворота стойки шасси, причем выход каждого датчика больших углов поворота соединен с входом соответствующего блока управления, каждый из которых связан с соответствующим электрогидравлическим агрегатом управления, соединенным с силовым цилиндром исполнительного механизма поворота колес, датчики обратной связи, входные валы которых кинематически связаны с механизмом поворота колес, а выходы с блоками управления, отличающаяся тем, что она снабжена механизмом переключения режимов, кинематически связанным с колонкой одной из рукояток управления и имеющим магнитно-управляемые выключатели, соединенные через две параллельные цепи включения с переключателем, установленным на штурвале, и механизмом подключения задающих датчиков больших углов поворота стойки шасси, кинематически связанным с колонкой другой рукоятки управления и с дополнительным центрирующим цилиндром.

ШАССИ САМОЛЕТА

Компоновка шасси

Шасси самолета представляют систему опор, необходимых для маневрирования по аэродрому, разбега и пробега самолета при взлете, посадке и стоянки. Во время взлета и посадки шасси поглощает и рассеивает кинетическую энергию ударов и поступательного движения.

Шасси должно обеспечивать устойчивое движение самолета во время пробега, заданную проходимость по грунту и иметь минимальный вес и габариты.

По количеству и взаимному расположению шасси различают следующие компоновочные схемы.

Трехопорные шасси с хвостовой опорой (рис. 4.1 а) характеризуется посадочным углом φ между осью самолета и касательной к главной и задней опорам; противокапотажным углом γ между вертикалью при взлете и прямой, соединяющей центр тяжести самолета и точку касания главной опоры; углом выноса шасси λ= γ+ φ., колеей шасси В ш, представляющей расстояние между главными опорами.

Рассмотренная схема шасси обладает рядом недостатков – плохая путевая устойчивость, опасность капотирования при резком торможении, наклонный пол кабины при стоянке, возможность взмывания самолета при посадке.

С увеличением посадочных скоростей эти недостатки стали проявляться в большей степени. Поэтому схема шасси с хвостовой опорой, обладающая минимальным весом, применяется на легких самолетах с поршневыми двигателями.

Рис.4.1. Схемы шасси

Основной схемой шасси современных самолетов является трехопорная схема с носовым колесом (рис. 4.1 б).

Она характеризуется следующими параметрами: посадочным углом φ между осью фюзеляжа и касательной к главным опорам и нижней точки хвостовой части фюзеляжа; стояночным углом φ с между осью фюзеляжа и плоскостью земли; противокапотажным углом γ; высотой шасси Η; высотой главных опор e, относительно центра тяжести, колеей шасси B ш и базой шасси в ш, представляющей расстояние между носовой и главными опорами

Рассмотренная схема шасси обеспечивает хорошую путевую устойчивость, ухудшению проходимости по грунту, снижению безопасности при поломке носового колеса, возможности самовозбуждающихся колебаний типа шимми.

Велосипедная схема шасси (рис. 4.1. в) характеризуется наличием двух основных опор, расположенных под фюзеляжем, и подкрыльных опор, предохраняющий самолет от опрокидывания на крыло. Шасси характеризуется теми же параметрами, что и предыдущая схема и отличается лишь большим выносом шасси относительно центра тяжести. Велосипедная схема шасси является вынужденной и применяется для истребителей- бомбардировщиков с высоко - расположенным тонким крылом.

Из-за сравнительно большой нагрузки на носовую опору затруднен отрыв самолета при взлете. Для облегчения взлета применяются механизмы «вздыбливания » передней опоры или «приседания» задней опоры. Это значительно утяжеляет вес шасси и усложняет технику пилотирования.

Многоопорные шасси применяются на тяжелых самолетах, эксплуатирующихся на грунтовых аэродромах. Для повышения проходимости самолета требуется большое количество колес или дополнительные опоры. Дополнительная центральная опора смещается относительно основных для удобства уборки шасси в фюзеляж. Для улучшения маневренности самолета задняя стойка может выполняться управляемой.

Конструктивно- силовые схемы шасси

Нога шасси современных самолетов состоит из опорных элементов (колес, лыж) ; амортизаторов для поглощения кинетической энергии; амортизаторных стоек, механизмов уборки и выпуска шасси; замков, фиксирующих шасси в убранном и выпущенном положении; механизмов поворота и управления шасси.

На самолетах применяются преимущественно три схемы шасси:

· ферменная,

· балочная

· и ферменно-балочная или подкосная.

Ферменная конструкция является наиболее легкой, поскольку основными элементами служат подкосы, работающие на растяжение- сжатие. Ферменные стойки применяются на не убирающимся шасси легких самолетов (например, АН-2) и поэтому распространены сравнительно редко.

Балочная схема (4.2.а) наиболее проста по конструкции и компактна. Стойка закреплена шарнирно по оси О-О \ и фиксируется замком или упором. В узле крепления изгибающий момент достигает наибольшей величины. При большой длине стойки шасси получаются тяжелыми. Для уменьшения нагрузки в узле крепления применяются подкосы, разгружающие амортизаторную стойку в одной или двух плоскостях. Такая схема называется подкосной или ферменно-балочной (4.2.б).

Конструкция шасси состоит из амортизаторной стойки 1, боковых подкосов 2, траверсы с цапфами 3, цилиндра- подъемника 4, складывающегося лобового подноса 5, механизма поворота колес 6. двухзвенника (шлиц-шарнир) 7, колес 8.

Стойка является основным элементом шасси, связывающая опоры шасси с конструкцией шасси с конструкцией самолета. Внутренняя полость стойки используется для устройства амортизатора.

Подкосы шасси служат дополнительными опорами стойки и разгружают ее от изгибающего момента и увеличивают жесткость конструкции.

Траверса представляют верхнюю часть стойки, предназначенные для крепления ноги шасси с конструкцией самолета.

Цилиндр- подъемник служит для уборки и выпуска шасси, а также для фиксации шасси в выпущенном положении.

Механизм поворота колес обеспечивает поворот колес передней ноги шасси для маневрирования самолета по аэродрому и предотвращает возникновение самовозбуждающихся колебаний типа шимми

Двухзвенник - устройство, состоящее из двух звеньев, соединяющих шток амортизаторной стойки с цилиндром и препятствующих повороту штоку в цилиндре.

Колесо состоит из пневматиков, барабана и тормозных устройств.

В зависимости от крепления колес к стойке различают рычажную подвеску колес (4.2.а) и телескопическую (4.2.б).

В стойках с рычажной подвеской колесо крепится к рычагу, поворачивающемуся относительно оси шарнира. Благодаря этому рычажные стойки способны амортизировать горизонтальные составляющие ударных нагрузок.

Недостатком рычажных стоек является большой вес и габариты.

В телескопических стойках колеса крепятся непосредственно на штоке амортизатора.

Такая стойка амортизирует нагрузки, действующие только вдоль ее оси. Для амортизации горизонтальных составляющих стойка устанавливается под некоторым углом к вертикали.

На тяжелых самолетах с целью уменьшения нагрузок на одно колесо применяются стойки с многоколесовыми тележками (рис. 4.3.), имеющие 4-8 колес.

Нога шасси состоит из амортизаторной стойки 1, выполненной как одно целое с траверсой, штока 2 сварной конструкции, в нижней части которого располагается узел крепления тележки 4.

Рама тележки крепится к штоку шарнирно, что уменьшает неравномерность нагружения колес при движении самолета по неровному грунту и разгружает стойку от изгиба. Требуемое положение перед посадкой придается тележке стабилизирующим амортизатором 8. Повороту тележки относительно оси стойки препятствует шлиц-шарнир 7. Для удобства уборки шасси стойка наклонена вперед по полету. Уборка и выпуск шасси осуществляется гидравлическим цилиндром подкосом 9, который в выпущенном положении выполняет роль подкоса.

Тележка (рис. 4.4.) служит для крепления колес. Она состоит из продольной балки 8; двух осей 2 для крепления 4 колес; двух передних 15 и двух задних тормозных тяг и тормозных рычагов 4,12, служащих для торможения колес; узла подвески тележки 9.

Шасси с многоколесными тележками довольно сложны по конструкции, имеют большой вес и ухудшают маневренность самолета при движении по грунту.

Вертикальный силовой элемент ферменной конструкции фюзеляжа, также может служить для подкрепления и придания жёсткости крыльям и оперению . Кроме того, стойка шасси является основным силовым элементом шасси летательного аппарата , воспринимающим и передающим на конструкцию планёра концентрированные статические и динамические нагрузки, возникающие при взлёте и особенно при посадке летательного аппарата.

Стойка в ферме

В ферменных фюзеляжах все нагрузки воспринимает пространственная ферма , составленная из трёх или четырёх плоских ферм. Основными силовыми элементами такой конструкции, помимо стойки, являются раскосы (подкосы), расчалки и лонжероны . Стойка в ферменной конструкции фюзеляжа работает на растяжение и сжатие . В настоящее время ферменные фюзеляжи почти не используют, им на смену пришли балочные фюзеляжи , где есть работающая обшивка , которая воспринимает вместе с каркасом из лонжеронов, стрингеров и шпангоутов изгибающие и крутящие моменты .

Стойка шасси

Стойка является основным силовым элементом шасси самолёта , воспринимающим и передающим на конструкцию планёра концентрированные статические и динамические нагрузки, возникающие при взлёте и посадке. Основные элементы стойки шасси:

  • амортизатор шасси - для обеспечения максимальной плавности хода при движении по аэродрому, а также гашения ударов, возникающих в момент приземления (часто используются многокамерные азото-масляные длинноходные амортизаторы), могут быть установлены также дополнительные стабилизирующие демпферы ;
  • складывающийся подкос, воспринимающий нагрузку от лобовых сил;
  • раскосы - стержни, расположенные по диагонали шарнирного многоугольника, образованного стойкой и подкосом, и обеспечивающие геометрическую неизменяемость этого многоугольника;
  • траверса - элемент крепления стойки к крылу или фюзеляжу;
  • механизм ориентации стойки шасси - для разворота стойки при её убирании или выпуске;
  • узел у нижнего основания стойки - для крепления оси колёс к стойке;
  • замки, обеспечивающие фиксацию стойки в выпущенном и убранном положениях;
  • цилиндры механизма выпуска и убирания шасси.

В начальный период развития авиации стоки шасси при полёте самолёта были неубирающимися. Это было одним из основных источников аэродинамического сопротивления. Для его снижения сначала стали устанавливать обтекатели на колёса и стойки, а затем при появлении скоростных самолётов началось широкое применение убирающегося шасси, хотя это увеличивало массу и усложняло конструкцию шасси.

Стойка – основной силовой элемент шасси, связывающий колесо с силовой схемой агрегата самолета. В большинстве случаев внутри стойки размещается амортизатор, и тогда стойка называется амортизационной.

В зависимости от назначения, характера нагружения и выполняемой работы различают следующие основные элементы стойки шасси: силовые элементы, элементы кинематики и управления, амортизирующие устройства.
Амортизирующие устройства (амортизационные стойки, пневматики колес, гасители колебаний и т.д.) поглощают и рассеивают энергию ударов самолета о землю, уменьшают действующие нагрузки и препятствуют возникновению колебаний при посадке и движении по земле.

Рис. 8.3. Типы стоек: а – телескопическая; б – рычажная; в – полурычажная.

Телескопические стойки (рис. 8.3.а ) устанавливают на самолетах, эксплуатируемых на бетонных и хорошо укатанных грунтовых ВПП, т.к. такая стойка плохо воспринимает продольные и боковые силы. Телескопическая стойка при посадке самолета воспринимает вертикальную составляющую действующей силы, горизонтальную составляющую такая стойка не амортизирует. Для частичной амортизации горизонтальной составляющей телескопические стойки обычно устанавливаются с небольшим наклоном и выносом колеса вперед (на самолете ТЛ-2000 установлена телескопическая стойка с пружиной). Телескопические стойки конструктивно проще, легче и надежнее рычажных, но подвергаются большим изгибающим нагрузкам, ухудшающим перемещение штока амортизатора и снижающим эффективность его уплотнений.

8.2.3. Самовозбуждающиеся колебания колёс передней опоры шасси (шимми)

На стойках шасси со свободно ориентирующимися колесами, самовозбуждающиеся колебанияпередней опоры шасси или шимми могут возникать на определённой скорости движения самолёта во время разбега или пробега. Эти колебания вызывают интенсивную вибрацию носовой части фюзеляжа и приборной доски. Вибрация затрудняет наблюдение за приборами, может вывести из строя бортовое оборудование, привести к срыву пневматика, поломки стойки и разрушению конструкции носовой части фюзеляжа.

Природа явления шимми была исследована в 1945 году академиком М. В. Келдышем.

Рассмотрим физическую картину возникновения шимми. Колесо передней опоры шасси в процессе разбега или пробега может совершать два взаимосвязанных движения (Рис. 8.4.). Во – первых, как самоориентирующееся, оно может разворачиваться на некоторый угол относительно оси стойки.

Во – вторых, оно может смещаться относительно линии движения самолёта на некоторую величину λ. Боковое смещение λ обусловлено в основном деформацией пневматика и частично деформацией стоки, а также возможно за счёт люфтов в стойке. Деформация пневматика и стойки вызывается силой сцепления (трения) между колесом и поверхностью аэродрома.



Колесо начинает двигаться по криволинейной траектории, похожей на синусоиду, и одновременно его плоскость периодически отклоняется от вертикали в стороны. С увеличением скорости колебания могут прогрессировать и вызвать срыв пневматика и разрушение стойки.

Критическая скорость шимми уменьшается при увеличении сил трения между пневматиком и грунтом. Поэтому с увеличением нагрузки на переднюю опору шимми будет возникать при меньшей скорости движения самолета. Явление шимми более вероятно на сухой бетонной полосе, имеющей коэффициент трения больший, чем на полосе с травяным покровом или влажной бетонной полосе.

Рис. 8.4. Схема возникновения самоколебаний передней стойки шасси

Шасси

На всех самолётах семейства RRJ используется убирающиеся шасси, с передней управляемой опорой и тормозными основными опорами. Передние опоры одинаковы на всех модификациях.

Основные опоры могут иметь одно из двух исполнений:

  • в виде четырехколесной тележки, или
  • в виде двухколесной опоры.

Выбор типа (исполнения) основной опоры определяет Заказчик. Узлы навески различных опор унифицированы, а размер ниши шасси выбран из условия размещения в них любой опоры.

Схема расположения опор
Схемы разворотов при рулении
Кинематическая схема передней опоры показана на Рис. 1.3-10.

Основной двухколесной опоры – на Рис. 1.3-11.
Основной опоры с четырехколесной тележкой на Рис. 1.3-12.

1.3.8.1. Передняя опора

Передняя опора шасси состоит из:

  • амортизационной стойки,
  • складывающегося подкоса,
  • механизма распора,
  • двух запирающих пружин,
  • цилиндра подлома механизма распора,
  • цилиндра уборки-выпуска,
  • двух спаренных нетормозных колес с шинами.

Опора посредством гидроцилиндра убирается вперед по направлению полёта в нишу, расположенную в носовой части фюзеляжа, и удерживается в убранном положении гидромеханическим замком. Ниша закрывается двумя парами створок, приводимыми в действие от стойки передней опоры с помощью механизмов управления створками. При выпущенной опоре передняя пара створок закрыта. Уборка и выпуск опоры производится от гидросистемы самолёта.

Аварийный выпуск обеспечивается механическим открытием замка убранного положения опоры и замков закрытого положения створок и осуществляется под действием собственного веса опоры и пружин механизма распора.

Колёса передней опоры управляемые и могут разворачиваться под действием механизма разворота колёс (режим управления) или под действием внешней силы (режим самоориентации). При уборке опоры колёса устанавливаются в нейтральное положение. Передние опоры всёх самолетов семейства RRJ унифицированы.

1.3.8.2. Основная опора

– опора с двумя колесами, размещенными в виде «спарки».

Каждая основная опора шасси включает:

  • стойку амортизационную телескопического типа;
  • подкос складывающийся передний;
  • подкос складывающий задний;
  • устройство запирания подкоса складывающегося переднего от самопроизвольного складывания при выпущенной опоре — распор с двумя пружинами;
  • устройство запирания подкоса складывающегося заднего от самопроизвольного складывания при выпущенной опоре — распор с двумя пружинами;
  • гидроцилиндр уборки-выпуска;
  • гидроцилиндр распора;
  • гидроцилиндр распора.

Стойка крепится к конструкции крыла при помощи полуосей размещенных в траверсе. Подкосы, фиксирующие опору в выпущенном положении, крепятся к конструкции фюзеляжа шарнирно. Распоры с пружинами являются замками подкосов и, в свою очередь замками выпущенного положения опоры.

Гидроцилиндр каждого распора служит для преодоления эксцентриситета звеньев распора и вывода его из положения кинематического замка при уборке опоры.

В убранном положении опора фиксируется гидромеханическим замком.

Штатные уборка и выпуск осуществляются цилиндром уборки-выпуска от гидросистемы самолета.

Аварийный выпуск происходит под действием собственного веса опоры после механического открытия замков убранного положения.

Фиксация выпущенного положения производится под действием пружин распора. Опора оснащена двумя тормозными колёсами, размещёнными на одной общей оси, или колёсами, размещёнными попарно на двух осях.

Каждая тележка фиксируется двумя стабилизирующими пневмогидравлическими амортизаторами. Воздействие тормозного момента от колёс на тележку воспринимается четырьмя тормозными тягами.

Основные опоры всех самолётов семейства RRJ унифицированы. Амортизационная стойка обеспечивает восприятие нагрузок при разбегах и пробегах самолёта, поглощение энергии посадочных ударов, буксировку и швартовку самолета.

Стойка телескопического типа, имеет двухкамерный пневмогидравлический амортизатор с демпфированием на прямом и обратном ходе штока. Максимальный ход штока – 400 мм (15.75 in).

Стойка конструктивно состоит из:

  • цилиндра амортизатора;
  • штока амортизатора;
  • траверсы;
  • шлиц-шарнира;

Траверса при помощи двух полуосей шарнирно закреплена в нише основной опоры. На цилиндре амортизатора расположен узел крепления складывающегося подкоса. На подкосе расположен механизм распора с двумя пружинами и цилиндр распора. Цилиндр уборки-выпуска крепится к траверсе и каркасу.

Шлиц-шарнир соединяет цилиндр и шток амортстойки и фиксирует их от взаимного проворота. В нижней части штока имеется узел для установки спаренных колёс или четырехколёсной тележки. Основные двухколёсные опоры оборудованы тормозными колесами либо фирмы GOODRICH с шинами Н40х14,0-R19 (согласно сертификату EASA - http://www.easa.europa.eu/certification/type-certificates/docs/aircraft/EASA-TCDS-A.176_%28IM%29_Sukhoi_RRJ--95-01-03022012.pdf , стр. 12 - шины 40x14,5-R19 24PR 225 MPH), либо фирмы MICHELIN. Основные четырёхколёсные опоры оборудованы тормозными колёсами либо фирмы GOODRICH с шинами H30х9,5-R16, либо фирмы MICHELIN. Давление зарядки шин H40х14,0-R19, H30x9,5-R16 для различных самолетов семейства составляет: …

Конструкция 2-х и 4-х тележечного шасси разработана фирмой «Гражданские Самолеты Сухого».

RRJ0000-RP-100-041_Rev.B 1-34

Фото: Основная и передняя опоры самолёта SSJ100 | Интернет

Вопрос к уважаемым знатокам. Как вы считаете, почему до сих пор не используется электромеханическая система уборки-выпуска шасси. Казалось бы, задача вполне выполнимая - масса шасси постоянная и не такая уж большая, усилие уборки всегда одинаковое, требования к скорости уборки-выпуска - тоже не космические. Электромеханические домкраты существуют в природе, и вполне справляются с весами в 2-3 тонны (а шасси, наверное, легче), при достаточно малом весе, размерах, электропотреблении. Благодаря такой системе удалось бы существенно упростить гидравлическую систему самолета и повысить его надежность в целом. Может быть, даже уменьшить вес при этом (это нужно считать, конечно). Тем не менее, никто из авиа производителей так не делает. Не сомневаюсь, что они все умные, и, наверное, уж точно лучше меня знают, что к чему:). Но все же, почему так не делают до сих пор?

Гидравлическая система в самолете сложна совсем не потому, что ей нужно убирать/выпускать шасси..
Основная задача этих систем- приведение в действие системы управления самолетом - рулей направления и высоты, и элеронов, воздушного тормоза и щитков..
И если сделать привод уборки/выпуска шасси электромеханическим, то упростить гидросистему совершенно не удастся..
другое дело, что счас стараются перейти на смешанные системы приведения, где электричество используется в качестве резервной системы…
Но к шасси то это зачем?

На мой взгляд, есть несколько очевидных фактов, почему гидросистема упростится:
1) Исчезнут гидроцилиндры уборки-выпуска шасси, связанные с ними клапана и гибкие шланги высокого давления. Причем эти шланги - источник потенциального отказа системы.
2) В гидросистеме не станет больше потребителей, требующих больших расходов гидрожидкости. Все рулевые поверхности требуют достаточно небольших расходов, а уборка-выпуск шасси - это как стресс для гидросистемы - объемы цилиндров сравнительно большие, жидкости нужно прокачивать много и быстро. В связи с этим появится возможность уменьшить объемы гидробаков, оптимизировать систему в целом.

Далее мои предположения, но мне кажется, что это тоже важные вещи:
Возможно, в результате появится возможность исключить из гидросистемы дублирующие гидронасосы переменного тока ACMP1 и ACMP3. Сейчас в SSJ они в нормальной ситуации включаются в дополнение к основным только в момент уборки-выпуска шасси. Я предполагаю, что это сделано из-за нехватки производительности основных насосов - они рассчитаны на объемы, необходимые для рулевых поверхностей (небольшие объемы), а когда требуется большая производительность, их не хватает и в добавку включаются электро-насосы. Исключение этих насосов из системы - это еще одна возможность упрощения гидросистемы и уменьшения ее веса.

Ну а раз вы затронули тему рулевых поверхностей - давно меня мучает вопрос, не у кого спросить:). Везде в интернете пишут, что гидравлика до сих пор используется для привода рулевых поверхностей потому, что, дескать, существующие на настоящий момент электроприводы не в состоянии обеспечить потребные усилия и скорость перемещения рулевых поверхностей. Но вот есть пример из практики - ИЛ-62, надежная, проверенная машина, работает в том же диапазоне скоростей и высот, что и существующие гражданские самолеты. Рулевые поверхности у него на всех режимах полета перемещаются посредством мускульной силы пилотов:). Достигнуто это за счет тщательной проработки аэродинамической компенсации рулевых поверхностей. Если при должном подходе хватает мускульной силы пилотов, то это означает, что любые электроприводы могут тоже с этим справиться. Очень странно мне все это - почему нельзя использовать этот опыт для создания подобной схемы с электроприводами? Причем для их работы потребуется совсем небольшая электрическая мощность, а сами приводы из-за небольших потребных нагрузок могут быть компактными и легкими. Очень было бы интересно послушать мнения знающих людей - почему так не делают сейчас?

Ну, я конечно "валенок" в механике и авиации - но как-то и в автомобильном транспорте больше ГУР используют, хотя думаю требований по безопасности в автомобильной промышленности поменьше, чем в авиации. В авиации думаю, также немало важен фактор объема - гидроусилитель влезет в тонкое крыло, электроусилитель с "натягом" - хотя, повторюсь - это мнение полного "профана"…

1) Да, исчезнут..А что будет взамен их, Вы представление имеете? Электромоторы и редуктороры весят ого-го!! Кроме того, над к ним тянуть СИЛОВОЙ кабель и защишать его.
А гидравлические магистрали- все равно уже там, проходят аккуратненько мимо гидроцилиндров шасси:-) Что мы выигрываем?
И по соотношению усилие/вес гидравлика пока еще весьма на уровне. Это связано с тем, что даже моторы имеют не только тепловой предел, но и ограничены по насыщению магнитов.
2) С потребителями как раз проблем нету. Чем больше- тем лучше, гидрожидкость охлаждается хоть.. Тем более счас переходят на технику 5000psi - вопрос становится очень актуальным.. Так же, правда, как и борьба с течью.. :-(

А пот поводу рулевых поверхностей.
У электроприводов главный недостаток- высокая инерционность, что и сильно ограничивает его применение. даже у "компактных и легких"
Причем инерционность практически не зависит от размеров мотора, она всегда им пропорциональна…
То есть пока он стартанет, разгонится, начнет крутить- а уже панель перекладывать на другую сторону надо.
Клапана тут практически безинерционны, и мгновено реагируют на сигнал..
Так что до конца века гидравлики еще довольно далеко..

Re: Электромеханическая система уборки-выпуска шасси

Ого, жаль тут нет "плюсика", за такой комментарий я бы Вашу "карму" на этом форуме приподнял;-).

Да, спасибо за ответ. Есть над чем подумать:). Как всегда - кажется, что вот как все можно здорово переделать. Но не тут то было. Тем не менее, какие есть мысли у меня по этому всему:

1) Электромоторы тяжелые, и редукторы тоже. Но, если правильные люди над этим поработают, думаю, что по результату все не так-то будет и тяжелым. Хотя, это все мои рассуждалки и не более того. Есть примеры - в мире радиоуправляемых моделей - сейчас распространены бесколлекторные электродвигатели. Очень мощные и легкие одновременно. Хотя, конечно, согласен - до тех пор, пока на самолете есть гидросистема, нет смысла "дергаться" с шасси. Смысл появится только тогда, когда гидросистемы не будет совсем.

2) А чтобы гидросистемы не стало, нужно переводить рулевые поверхности на электричество. Действительно, про момент инерции я не подумал. Если это единственный оставшийся фактор, то вполне понятно, что с этим делать. Мотор должен быть с максимально легким ротором, работать как можно с меньшим количеством оборотов. Редуктор должен содержать как можно меньше шестерен, и все они должны быть облегчены. В результате такая система выдаст меньшее усилие на выходе. Т.е., помимо этого, нужно все же работать над уменьшением потребного усилия для привода рулевых поверхностей (например, аэродинамикой). Но это уже делали (ил-62), поэтому тут тоже понятно, что и как делать.

3) Остается один только вопрос - кто и когда это сделает:). К сожалению, то, что видно сейчас - все зажаты во временные и финансовые рамки. В таких условиях проще, дешевле, быстрее найти интегратора, который предложит готовое решение. Что-то мне подсказывает, что это решение не будет на электро-тяге. В этом замкнутом круге выход может быть только у каких-то больших корпораций, которые могут себе позволить дорогостоящие НИОКР по созданию приводов, и по их сертификации. Кстати, может кто знает - у Боинга на Дримлайнере - гидравлика или электроприводы? При первом поиске таких подробностей не нашел.

По иронии судьбы я этим как раз и занимаюсь:-)
И в принципе, обнадеживающие результаты есть. Есть некоторые компоновочные решения, которые позволяют мотору быть медленным и редуктору легким:-) Например, вполне элегантно выглядит компоновка полностью электрического ground spoiler actuator. Еще более элегантно выглядит привод закрылков.

Но занимаюсь я частным порядком, поэтому совершенно не факт, что смогу или захочу применять это в авиаиндустриии. Геморройно все там. Автомобилестроительная отрасль гораздо более падка на новизну и неслыханно щедра при этом:-)

Новое на сайте

>

Самое популярное