Домой Питание Механическая характеристика асинхронной машины. Механические характеристики асинхронных двигателей. Двигательный режим Для асинхронных двигателей с к.з. ротором

Механическая характеристика асинхронной машины. Механические характеристики асинхронных двигателей. Двигательный режим Для асинхронных двигателей с к.з. ротором

Асинхронный короткозамкнутый электродвигатель (рисунок 5.1) и АД с фазным ротором (рисунок 5.2) широко распространены в электроприводе благодаря большому ресурсу безотказной работы, высоким показателям в работе, хорошим регулировочным свойствам.

На рисунке 5.3 представлена схема замещения одной фазы электродвигателя с учетом параметров намагничивающего контура с активным r m и индуктивным x m сопротивлениями.

В схеме замещения:

r 1 - активное сопротивление фазы статорной обмотки;

r 2 - приведенное к статору активное сопротивление фазы роторной обмотки;

x 1 - индуктивное сопротивление фазы статорной обмотки;

x 2 - приведенное к статору индуктивное сопротивление фазы роторной обмотки;

x m - индуктивное сопротивление контура намагничивания.

В соответствии со схемой замещения, роторный ток I 2 ’ имеет значение

Из (5.1) следует, что роторный ток I 2 зависит от скольжения s , т.е. от частоты вращения ротора машины, поскольку

Заметим, что при пуске скольжение s = 1 (текущее значение частоты вращения w = 0) , а при частоте вращения w=w 0 идеального холостого хода скольжение равно s = 0 . Из соотношения следует также, что при пуске роторный ток достигает максимального значения I @ (8¸10)I ном , и его следует ограничивать.

Частота тока ротора f p при значении частоты f c сетевого напряжения f p = f c ×s, следовательно, при пуске s=1 и асинхронная машина может быть представлена трансформатором напряжения, поскольку f p =f c =50Гц . По мере разгона двигателя и его работе с номинальным скольжением s н , которое не превышает s н 0,1 ; падает и частота роторного тока f p = 1..5Гц.

Мощность Р 1 , потребляемая АД из сети, расходуется на покрытие потерь в контуре намагничивания ∆Р m и в обмотке статора ∆Р 1 , остаток ее преобразуется в электромагнитную мощность Р Э , которая равна

В свою очередь, , и, решая совместно и находим значение электромагнитного момента

.

Зависимость (5.4) является описанием механической характеристики АД и представляет сложную зависимость момента АД от скольжения. Исследуем ее на экстремум, взяв производную и приравняв ее нулю:

Зависимость имеет максимум при критическом значении скольжения, равном

и критическом (максимальном) моменте

Заметим, знак (+) относится к двигательному режиму, а знак (-) к генераторному режиму машины.

Для практических расчетов, удобнее использовать формулу Клосса, полученную из выражений

, где .

В крупных асинхронных машинах r 1 << r 2 , и ε ≈0. Механическая характеристика АД имеет вид, изображенный на рисунке 2.4. Характерные точки характеристики:

1- s=0; М=0 , при этом скорость двигателя равна синхронной;

2- s=s ном , М=М ном - номинальный

режим работы двигателя;

3- s = s к , М = М кр.Д - максимальный момент в двигательном режиме;

4- s = 1, М = М п - начальный пусковой момент;

5- s = -s к , М = М кр.Г - максимальный момент в генераторном режиме.

Анализируя влияние напряжения питания U на механические характеристики электродвигателя, имеем на основании соотношений (5.6) и (5.7), что критическое скольжениеs к остается постоянным при понижении напряжения, а критический момент M кр.д уменьшается пропорционально квадрату питающего напряжения (рисунок 5.5).

При понижении сетевого напряжения до значения 0,9×U ном , т.е. на 10% от U ном , критический момент M кр.д уменьшается на 19%. При снижении питающего напряжения для развития прежнего значения момента двигатель должен работать с большими роторными токами.

При проектировании электродвигателя следует убедиться, что значение пускового (s = 1 ) и критического моментов (s = s к ) при минимально возможном напряжении удовлетворяют требованиям рабочей машины.

Анализируя влияние активного сопротивления , вводимого в роторную цепь, на основании соотношений (5.5)-(5.6), что с увеличением роторного

сопротивления, которое становится равным (r 2 + R доб ), увеличивается критическое скольжение S к , но величина критического момента двигателя M кр.д остается без изменения.

Механические характеристики приведены на рисунке 12. Метод используется для запуска машины, когда на время пуска в роторную цепь включается значительное по величине R доб . Диаграмма запуска аналогична диаграмме запуска двигателя постоянного тока независимого возбуждения. Для расчета искусственных механических характеристик при введении сопротивления R доб в роторную цепь используется соотношение

где s и и s e – скольжения соответственно на искусственной и естественной характеристиках.

Зная величину R доб , вводимого в роторную цепь, для тех же значений момента по соотношению (5.8) производится расчет скольжений s и на искусственной характеристике.

Введение активно – индуктивных сопротивлений в роторную цепь машины (рисунок 14) используется для поддержания большего постоянства пускового момента машины по сравнению с естественной характеристикой машины – механическая характеристика машины в области скольжений 1 к представляется более плавной кривой.

Критический момент машины M кр.д и критическое скольжение s к машины изменяются в соответствии с соотношениями. Введение активных и индуктивных сопротивлений в статорную цепь машины (рисунок) используется для уменьшения броска пускового тока машины, поскольку напряжение непосредственно на зажимах статора становится функцией тока и по мере уменьшения пускового тока (разгон) указанное напряжение растет и восстанавливается до значения, близкого к U ном . Вывод активных и индуктивных сопротивлений из статорной цепи машины осуществляется релейно - контакторной или бесконтактной схемой.

Асинхронные двигатели (АД) – самый распространенный вид двигателей, т.к. они более просты и надежны в эксплуатации, при равной мощности имеют меньшую массу, габариты и стоимость в сравнении с ДПТ. Схемы включения АД приведены на рис. 2.14.

До недавнего времени АД с короткозамкнутым ротором применялись в нерегулируемых электроприводах. Однако с появлением тиристорных преобразователей частоты (ТПЧ) напряжения, питающего статорные обмотки АД, двигатели с короткозамкнутым ротором начали использоваться в регулируемых электроприводах. В настоящее время в преобразователях частоты применяются силовые транзисторы и программируемые контроллеры. Способ регулирования скорости получил название импульсного и его совершенствование является важнейшим направлением в развитии электропривода.

Рис. 2.14. а) схема включения АД с короткозамкнутым ротором;

б) схема включения АД с фазным ротором.

Уравнение для механической характеристики АД может быть получено на основании схемы замещения АД. Если в этой схеме пренебречь активным сопротивлением статора, то выражение для механической характеристики будет иметь вид:

,

Здесь М к – критический момент; S к - соответствующее ему критическое скольжение; U ф – действующее значение фазного напряжения сети; ω 0 =2πf/p – угловая скорость вращающегося магнитного поля АД (синхронная скорость); f – частота питающего напряжения; p – число пар полюсов АД; х к – индуктивное фазное сопротивление короткого замыкания (определяется из схемы замещения); S=(ω 0 -ω)/ω 0 – скольжение (скорость ротора относительно скорости вращающегося поля); R 2 1 – суммарное активное сопротивление фазы ротора.

Механическая характеристика АД с короткозамкнутым ротором приведена на рис. 2.15.

Рис. 2.15. Механическая характеристика АД с короткозамкнутым ротором.

На ней можно выделить три характерные точки. Координаты первой точки (S=0; ω=ω 0 ; М=0 ). Она соответствует режиму идеального холостого хода, когда скорость ротора равна скорости вращающегося магнитного поля. Координаты второй точки (S=S к; М=М к ). Двигатель работает с максимальным моментом. При М с >М к ротор двигателя будет принудительно остановлен, что для двигателя является режимом короткого замыкания. Поэтому вращающий момент двигателя в этой точке и называется критическим М к . Координаты третьей точки (S=1; ω=0; М=М п ). В этой точке двигатель работает в режиме пуска: скорость ротора ω=0 и на неподвижный ротор действует пусковой момент М п . Участок механической характеристики, расположенный между первой и второй характерными точками, называется рабочим участком. На нем двигатель работает в установившемся режиме. У АД с короткозамкнутым ротором при выполнении условий U=U н и f=f н механическая характеристика называется естественной. В этом случае на рабочем участке характеристики расположена точка, соответствующая номинальному режиму работы двигателя и имеющая координаты (S н; ω н; М н ).


Электромеханическая характеристика АД ω=f(I ф) , которая на рис.2.15 изображена штриховой линией, в отличие от электромеханической характеристики ДПТ, совпадает с механической характеристикой только на ее рабочем участке. Это объясняется тем, во время пуска из-за изменяющейся частоты э.д.с. в обмотке ротора Е 2 изменяется частота тока и соотношение индуктивного и активного сопротивлений обмотки: в начале пуска частота тока большая и индуктивное сопротивление больше активного; с увеличением скорости вращения ротора ω частота тока ротора, а значит и индуктивное сопротивление его обмотки, уменьшается. Поэтому пусковой ток АД в режиме прямого пуска в 5÷7 раз превышает номинальное значение I фн , а пусковой момент М п равен номинальному М н . В отличии от ДПТ, где при пуске необходимо ограничивать пусковой ток и пусковой момент, при пуске АД пусковой ток необходимо ограничивать, а пусковой момент увеличивать. Последнее обстоятельство наиболее важно, поскольку ДПТ с независимым возбуждением запускается при М с <2,5М н , ДПТ с последовательным возбуждением при М с <5М н , а АД при работе на естественной характеристике при М с <М н .

У АД с короткозамкнутым ротором увеличение М п обеспечивается специальной конструкцией обмотки ротора. Паз для обмотки ротора делают глубоким, а саму обмотку располагают в два слоя. При пуске двигателя частота Е 2 и токи ротора большие, что приводит к появлению эффекта вытеснения тока – ток протекает только в верхнем слое обмотки. Поэтому увеличивается сопротивление обмотки и пусковой момент двигателя М П . Его величина может достигать 1,5М н .

У АД с фазным ротором увеличение М П обеспечивается за счет изменения его механической характеристики. Если сопротивление R П , включенное в цепь протекания тока ротора, равно нулю – двигатель работает на естественной характеристике и М П =М Н . При R П >0 увеличивается суммарное активное сопротивление фазы ротора R 2 1 . Критическое же скольжение S к по мере увеличения R 2 1 тоже увеличивается. Вследствие этого у АД с фазным ротором введение R П в цепь протекания тока ротора приводит к смещению М К в сторону больших скольжений. При S К =1 М П =М К. Механические характеристики АД с фазным ротором при R П >0 называются искусственными или реостатными. Они приведены на рис. 2.16.

Наиболее распространенными электрическими двигателями в промышленности, сельском хозяйстве и во всех других сферах применения являются асинхронные двигатели. Можно сказать, что асинхронные двигатели с короткозамкнутым ротором являются основным средством преобразования электрической энергии в механическую. Принцип работы асинхронного двигателя был рассмотрен в § 1.2 и 6.1.

Электромагнитное поле статора вращается в воздушном зазоре машины со скоростью со = 2nf { /р п . При стандартной частоте 50 Гц номинальная скорость ротора зависит от числа пар полюсов р п (табл. 6.1).

Таблица 6.1

Зависимость скорости вращения асинхронных двигателей от числа пар

полюсов

Число пар полюсов р п

Угловая скорость электромагнитного поля статора coq. 1/с

Скорость двигателя, об/мин

синхронная вращения л 0

примерная

номинальная

В зависимости от конструкции ротора асинхронного двигателя различают асинхронные двигатели с фазным и короткозамкнутым ротором. В двигателях с фазным ротором на роторе располагается трехфазная распределенная обмотка, соединенная обычно в звезду, концы обмоток соединены с контактными кольцами, через которые электрические цепи ротора выводятся из машины для подключения к пусковым сопротивлениям с последующим закорачиванием обмоток. В короткозамкнутых двигателях обмотка выполнена в виде беличьей клетки - стержней, замкнутых накоротко с двух сторон кольцами. Несмотря на специфическое конструктивное устройство, беличью клетку также можно рассматривать как трехфазную обмотку, замкнутую накоротко.

Электромагнитный момент М в асинхронном двигателе создается благодаря взаимодействию вращающегося магнитного поля статора Ф с активной составляющей тока ротора:

где к - конструктивная постоянная.

Ток ротора возникает благодаря ЭДС Е 2 , которая индуктируется в обмотках ротора вращающимся магнитным полем. Когда ротор неподвижен, асинхронный двигатель представляет собой трехфазный трансформатор с обмотками замкнутыми накоротко или нагруженными на пусковое сопротивление. Возникающую при неподвижном роторе в его обмотках ЭДС называют номинальной фазной ЭДС ротора Е 2н. Эта ЭДС приблизительно равна фазному напряжению статора, деленному на коэффициент трансформации к т:

При вращающемся двигателе ЭДС ротора Е 2 и частота этой ЭДС (а значит, и частота тока в обмотках ротора)^ зависят от частоты пересечения вращающимся полем проводников обмотки ротора (в короткозамкнутом двигателе - стержней). Эту частоту определяет разность скоростей поля статора со и ротора со, которую называют абсолютным скольжением :

При анализе режимов работы асинхронного двигателя с постоянной частотой питающего напряжения (50 Гц) обычно используют относительную величину скольжения

Когда ротор двигателя неподвижен, s = 1. Наибольшая ЭДС ротора при работе в двигательном режиме будет при неподвижном роторе (Е 2н), по мере увеличения скорости (уменьшении скольжения) ЭДС Е 2 будет уменьшаться:

Аналогично частота ЭДС и тока ротора/ 2 при неподвижном роторе будет равна частоте тока статора/, и по мере увеличения скорости будет уменьшаться пропорционально скольжению:

В номинальном режиме скорость ротора незначительно отличается от скорости поля, и номинальное скольжение составляет для двигателей общего применения мощностью 1,5...200,0 кВт всего 2...3%, а для двигателей большей мощности порядка 1%. Соответственно в номинальном режиме ЭДС ротора составляет 1...3% от номинального значения этой ЭДС при 5 = 1. Частота тока ротора в номинальном режиме будет составлять всего 0,5... 1,5 Гц. При 5 = 0, когда скорость ротора равна скорости поля, ЭДС ротора Е 2 и ток ротора / 2 будут равны нулю, момент двигателя также будет равен нулю. Этот режим является режимом идеального холостого хода.

Зависимость частоты ЭДС и тока ротора от скольжения определяет своеобразие механических характеристик асинхронного двигателя.

Работа асинхронного двигателя с фазным ротором, обмотки которого замкнуты накоротко. Как показано в (6.16), момент двигателя пропорционален потоку Ф и активной составляющей тока ротора / 2 " а, приведенного к статору. Поток, создаваемый обмотками, зависит от значения и частоты питающего напряжения

Ток ротора равен

где Z 2 - полное сопротивление фазы обмотки ротора.

Следует учитывать, что индуктивное сопротивление обмотки ротора х 2 является величиной переменной, зависящей от частоты тока ротора, а, следовательно, от скольжения: х 2 = 2п 2 2 = 2к t 2 .

При неподвижном роторе при s = 1 индуктивное сопротивление обмотки ротора максимальное. По мере роста скорости (уменьшении скольжения) индуктивное сопротивление ротора х 2 уменьшается и при достижении номинальной скорости составляет всего 1...3% от сопротивления при 5 = 1. Обозначив x 2s=l = х 2н, получим

Приведем параметры цепи ротора к обмотке статора с учетом коэффициента трансформации и на основе сохранения

равенства мощности:

И активная составляющая тока ротора имеет вид:

Разделив числитель и знаменатель формулы (6.26) на s, получим

Проведенная математическая операция - деление числителя и знаменателя на s , конечно, не изменяет справедливость равенства (6.29), но носит формальный характер, что нужно учитывать при рассмотрении этого соотношения. В действительности, как это следует из исходной формулы (6.26), от скольжения зависит индуктивное сопротивление ротора х 2 , а активное сопротивление г 2 остается постоянным. Использование выражения (6.29) позволяет по аналогии с трансформатором составить схему замещения асинхронного двигателя, которая представлена на рис. 6.4,а.


Рис. 6.4. Схемы замещения асинхронного двигателя: а - полная схема; б- схема с вынесенным намагничивающим контуром

Для анализа нерегулируемого электропривода эту схему можно упростить, перенеся контур намагничивания на зажимы двигателя. Упрощенная П-образная схема замещения представлена на рис. 6.4Д исходя из которой, ток ротора будет равен:

где х к =х + х" 2и - индуктивное сопротивление короткого замыкания. Активная составляющая тока ротора с учетом (6.28) будет:

Подставляя (6.22) и (6.31) в (6.16), получим выражение для момента асинхронного двигателя

Естественная механическая характеристика асинхронного двигателя оз = f(M) с фазным ротором, обмотки которого замкнуты накоротко, представлена на рис. 6.5. Здесь же показана электромеханическая характеристика двигателя ю = /(/j), определяемая из векторной диаграммы асинхронного двигателя на рис. 6.6, I x = I + / 2 ".

Рис. В.5. Естественная механическая и электромеханическая характеристики асинхронного двигателя

Рис. В.В. Упрощенная векторная диаграмма асинхронного двигателя

Полагая ток намагничивания реактивным, получим где

Приравняв производную dM/ds = , найдем максимальное значение момента асинхронного двигателя М к = М н и соответствующее ему значение критического скольжения s K:


где s K - критическое скольжение; знак «+» означает, что эта величина относится к двигательному режиму, знак «-» - к генераторному режиму рекуперативного торможения.

С учетом (6.34) и (6.35) формулу механической характеристики (6.32) можно преобразовать к более удобному для пользования выражению - формуле Клосса:

Для двигателей мощностью более 15 кВт сопротивление обмотки статора г, невелико и при частоте 50 Гц значительно меньше х к. Поэтому в приведенных ранее выражениях величиной г, можно пренебречь:

По полученным формулам можно рассчитать механическую характеристику асинхронного двигателя, пользуясь его паспортными данными, зная номинальный момент М н, номинальное скольжение s h и перегрузочную способность двигателя X.

Заметим, что анализируя электромагнитные процессы в асинхронном двигателе для установившегося режима, пришли к тем же соотношениям (6.9) и (6.10), которые были получены в § 6.1 на основе дифференциальных уравнений обобщенной двухфазной машины.

Анализ особенностей механической характеристики асинхронного двигателя (см. рис. 6.5). Она носит нелинейный характер и состоит из двух частей. Первая - рабочая часть - в пределах скольжения от 0 до s K . Эта часть характеристики близка к линейной и имеет отрицательную жесткость. Здесь момент, развиваемый двигателем, примерно пропорционален току статора 1 Х и ротора / 2 . Так как на этой части характеристики s то второе слагаемое знаменателя в формуле (6.39) существенно меньше первого, и им можно пренебречь. Тогда рабочую часть механической характеристики можно приближенно представить в линейной форме, где момент пропорционален скольжению:

Вторая часть механической характеристики асинхронного двигателя при скольжениях, больших s K (s>s K) криволинейная, с положительным значением жесткости (3 . Несмотря на то, что ток двигателя по мере роста скольжения увеличивается, момент, напротив, уменьшается. Если обмотки ротора асинхронного двигателя с фазным ротором во внешней цепи замкнуты накоротко, то пусковой ток такого двигателя (при со = 0 и 5 =1) будет очень большим и превысит номинальный в 10-12 раз. В то же время пусковой момент составит порядка 0,4...0,5 номинального. Как будет показано далее, для короткозамкнутых двигателей пусковой ток будет (5...6)/ н, а пусковой момент (1,1...1,3)А/ н.

Для объяснения такого несоответствия между пусковым током и моментом рассмотрим векторные диаграммы цепи ротора (рис. 6.7) для двух случаев: когда скольжение велико (пусковая часть характеристики); когда скольжение мало (рабочая часть характеристики). При пуске, когда 5=1, частота тока ротора равна частоте питающей сети (f 2 = 50 Гц). Индуктивное сопротивление обмотки ротора [см. (6.24)] велико и существенно превосходит активное сопротивление ротора /* 2 , ток отстает от ЭДС ротора на большой угол ф, т.е. ток ротора, в основном, реактивный. Поскольку ЭДС ротора в этом случае будет велика 2 = 2н, то и пусковой ток будет очень большим, однако из-за малого значения ср 2 активная составляющая тока ротора 1 2а будет невелика, следовательно, и момент, развиваемый двигателем, будет также невелик.

При разгоне двигателя скольжение уменьшается, ЭДС ротора, частота тока ротора, индуктивное сопротивление ротора пропорционально уменьшаются. Соответственно уменьшается значение полного тока ротора и статора, однако, вследствие повышения ф 2 активная составляющая тока ротора растет и растет момент двигателя.

Когда скольжение двигателя станет меньше s K , частота тока ротора уменьшится настолько, что индуктивное сопротивление станет уже меньше активного, и ток ротора будет практически активным (рис. 6.7,6), момент двигателя будет пропорционален току ротора. Так, если номинальное скольжение двигателя 5 н = 2%, то по сравнению с пусковыми параметрами частота тока ротора уменьшится в 50 раз, соответственно уменьшится индуктивное сопротивление ротора. Поэтому, несмотря на то, что ЭДС ротора также уменьшится в 50 раз, она будет достаточна для создания номинального тока ротора, обеспечивающего номинальный момент двигателя. Таким образом, своеобразие механической характеристики асинхронного двигателя определяется зависимостью индуктивного сопротивления ротора от скольжения.


Рис. В.7. Векторная диаграмма цепи ротора асинхронного двигателя: а - при большом скольжении: б - при и малом скольжении

Исходя из изложенного, для пуска асинхронного двигателя с фазным ротором нужно принять меры для увеличения пускового момента и снижения пусковых токов. С этой целью в цепь ротора включают добавочное активное сопротивление. Как следует из формул (6.34), (6.35), введение добавочного активного сопротивления не изменяет максимального момента двигателя, а лишь изменяет значение

критического скольжения: , где /?" доб - приведенное к

статору добавочное сопротивление в цепи ротора.

Введение добавочного активного сопротивления увеличивает полное сопротивление роторной цепи, в результате уменьшается пусковой ток и увеличивается ср роторной цепи, что ведет к увеличению активной составляющей тока ротора и, следовательно, пускового момента двигателя.

Обычно в роторную цепь двигателя с фазным ротором вводят секционированное сопротивление, ступени которого перемыкаются пусковыми контакторами. Расчет реостатных пусковых характеристик можно производить по формуле (6.39), используя значение s K , соответствующее R 2 б для каждой ступени пускового сопротивления. Схема включения дополнительных сопротивлений и соответствующие реостатные механические характеристики двигателя показаны на рис. 6.8. Механические характеристики имеют общую точку идеального холостого хода, равную скорости вращения электромагнитного поля статора со, а жесткость рабочей части характеристик уменьшается по мере возрастания суммарного активного сопротивления роторной цепи (2 + /? доб).


При пуске двигателя сначала вводится полное добавочное сопротивление /? 1доб. По достижении скорости, при которой момент двигателя Л/, становится близким к моменту сопротивления М с, часть пускового сопротивления шунтируется контактором К1, и двигатель переходит на характеристику, соответствующую значению добавочного сопротивления /? 2доб. При этом момент двигателя увеличивается до значения М 2 . По мере дальнейшего разгона двигателя контактором К2 закорачивается вторая ступень пускового сопротивления. После замыкания контактов контактора КЗ двигатель переходит на естественную характеристику и будет работать со скоростью, соответствующей точке 1.

Для расчета пусковых характеристик нужно задать значение момента М { при котором происходит переключение ступеней пусковых резисторов М х = 1,2М с. Пусковые значения момента М 2 (рис. 6.8) находят по формуле, = А/ , где т - число ступеней.

Для расчета ступеней пускового сопротивления найдем номинальное сопротивление ротора R 2h = 2н.лин/>/3 2н

Сопротивления ступеней:

Б короткозамкнутых асинхронных двигателях введение дополнительного сопротивления в цепь ротора невозможно. Однако тот же результат может быть получен, если воспользоваться эффектом вытеснения тока на поверхность проводника. Сущность этого явления состоит в следующем. Согласно закону электромагнитной индукции при протекании по проводнику переменного тока в нем индуктируется ЭДС самоиндукции, направленная против тока:

Значение этой ЭДС зависит от тока I , его частоты и индуктивности, определяемой характеристикой среды, окружающей проводник. Если проводник находится в воздухе, то магнитная проницаемость среды очень мала, следовательно, мала индуктивность L. В этом случае при частоте 50 Гц со= /с влияние ЭДС самоиндукции незначительно. Другое дело, когда проводник помещен в тело магнитопровода. Тогда индуктивность многократно увеличивается и ЭДС самоиндукции, направленная против тока, играет роль индуктивного сопротивления, препятствующего протеканию тока.


Рис. В.9. Конструкция ротора асинхронного короткозамкнутого двигателя: а - с глубоким пазом; б - с двойной клеткой; в - схема, поясняющая эффект вытеснения тока

Рассмотрим проявление действия ЭДС самоиндукции для случая проводника (стержня обмотки ротора), помещенного в глубокий паз магнитопровода ротора двигателя (рис. 6.9,а). Условно разделим сечение стержня на три части, которые соединены параллельно. Ток, протекающий по нижней части стержня образует поток Ф, магнитные силовые линии которого замыкаются по магнитопроводу. В этой части проводника возникает большая ЭДС самоиндукции e LV направленная против тока 1 2у

Ток / 23 (рис. 6.9, в), протекающий по верхней части стержня роторной обмотки образует поток Ф 3 , но, так как силовые линии этого потока в значительной части своей длины замыкаются по воздуху, то поток Ф 3 будет гораздо меньше, чем поток Ф,. Отсюда и ЭДС е 1Ъ будет во много раз меньше, чем e LV

Указанное распределение ЭДС самоиндукции по высоте стержня характерно для того режима, когда частота тока ротора велика - близка к 50 Гц. В этом случае, поскольку все три части стержня ротора соединены параллельно (см. рис. 6.9,в), то ток ротора / 2 пойдет по верхней части стержня, где меньше противоЭДС e L . Это явление называют вытеснением тока на поверхность паза. При этом эффективное сечение стержня, по которому идет ток, будет в несколько раз меньше, чем общее сечение стержня обмотки ротора. Таким образом, увеличивается активное сопротивление ротора г 2 . Отметим, что поскольку ЭДС самоиндукции зависит от частоты тока (т.е. от скольжения), то и сопротивления г 2 и х 2 являются функциями скольжения.

При пуске, когда скольжение велико, сопротивление г 2 увеличивается (в цепь ротора как бы вводится добавочное сопротивление). По мере разгона двигателя скольжение двигателя уменьшается, эффект вытеснения тока ослабевает, ток начинает распространяться вниз по сечению проводника, сопротивление г 2 уменьшается. При достижении рабочей скорости частота тока ротора настолько мала, что явление вытеснения тока уже не сказывается, ток протекает по всему сечению проводника, и сопротивление г 2 минимально. Благодаря такому автоматическому изменению сопротивления г 2 , пуск асинхронных короткозамкнутых двигателей протекает благоприятно: пусковой ток составляет

5,0...6,0 номинального, а пусковой момент 1,1...1,3 номинального.

Варьировать параметрами пусковой характеристики асинхронного двигателя при конструировании можно меняя форму паза, а также сопротивление материала стержней (состав сплава). Наряду с глубокими пазами применяют двойные пазы, образующие двойную беличью клетку (рис. 6.9,6), а также используют пазы грушевидной формы и др.

На рис. 6.10 представлены типовые механические характеристики различных модификаций асинхронных короткозамкнутых двигателей.


Рис. В.10. Примерные механические характеристики асинхронных короткозамкнутых двигателей: а - нормального исполнения; 6 - с повышенным скольжением; в - с повышенным пусковым моментом; г- краново-металлургических серий

Короткозамкнутые двигатели нормального исполнения используют для привода широкого класса рабочих машин и механизмов, прежде всего для приводов, работающих в длительном режиме. Для этого исполнения характерно высокое значение КПД и минимальное номинальное скольжение. Механическая характеристика в области больших скольжений имеет обычно небольшой провал, характеризуемый минимальным моментом М т{п.

Двигатели с повышенным скольжением имеют более мягкую механическую характеристику и используются в следующих случаях: когда два или более двигателя работают на общий вал, для механизмов (например, кривошипно-шатунных) с циклически изменяющейся нагрузкой, когда для преодоления сопротивления движению целесообразно использовать кинетическую энергию, запасаемую в движущихся частях электропривода, и для механизмов, работающих в повторно-кратковременном режиме.

Двигатели с повышенным пусковым моментом предназначены для механизмов с тяжелыми условиями пуска, например, для скребковых конвейеров.

Двигатели краново-металлургических серий предназначены для механизмов, работающих в повторно-кратковременном режиме с частыми пусками. Эти двигатели имеют большую перегрузочную способность, высокий пусковой момент, повышенную механическую прочность, но худшие энергетические показатели.

Аналитический расчет механических характеристик короткозамкнутых асинхронных двигателей достаточно сложен, поэтому приближенно характеристику можно построить по четырем точкам: при холостом ходе (5 = 0), при максимальном М к, пусковом М п и минимальном М т[п моменте в начале пуска. Данные этих характерных точек приведены в каталогах и справочниках на асинхронные двигатели. Расчет рабочей части механической характеристики коротко- замкнутого асинхронного двигателя (при скольжениях от 0 до 5 к) можно производить по формуле Клосса (6.36), (6.39), поскольку эффект вытеснения тока в рабочем режиме почти не проявляется.

Полная механическая характеристика асинхронного двигателя во всех квадрантах поля M-s, представлена на рис. 6.11.

Асинхронный двигатель может работать в трех тормозных режимах: рекуперативного и динамического торможения и торможения противовключением. Специфическим тормозным режимом является также конденсаторное торможение.

Рекуперативное генераторное торможение возможно, когда скорость ротора выше скорости вращения электромагнитного поля статора, чему соответствует отрицательное значение скольжения: оо>со 0 5

Несколько большее значение максимального момента в генераторном режиме объясняется тем, что потери в статоре (на сопротивлении г {) в двигательном режиме уменьшают момент на валу, а в генераторном режиме момент на валу должен быть больше, чтобы покрыть потери в статоре.

Отметим, что в режиме рекуперативного торможения асинхронный двигатель генерирует и отдает в сеть активную мощность, а для создания электромагнитного поля асинхронный двигатель и в режиме генератора должен обмениваться с сетью реактивной мощностью. Поэтому асинхронная машина не может работать автономным генератором при отключении от сети. Возможно, однако, подключение асинхронной машины к конденсаторным батареям, как к источнику реактивной мощности.

Способ динамического торможения : статорные обмотки отключают от сети переменного тока и подключают к источнику постоянного напряжения (рис. 6.12). При питании обмоток статора постоянным током создается неподвижное в пространстве электромагнитное поле, т.е. скорость вращения поля статора со дт = . Скольжение будет равно 5 ДТ = -со/со н, где со н - номинальная угловая скорость вращения поля статора.


Рис. 6 .12 а - включения динамического торможения; б - при соединении обмоток в звезду; в - при соединении обмоток в треугольник

Вид механических характеристик (рис. 6.13) подобен характеристикам в режиме рекуперативного торможения. Исходной точкой характеристик является начало координат. Регулировать интенсивность динамического торможения можно изменяя ток возбуждения / дт в обмотках статора. Чем выше ток, тем больший тормозной момент развивает двигатель. При этом, однако, нужно учитывать, что при токах / дт > / 1н начинает сказываться насыщение магнитной цепи двигателя.

Для асинхронных двигателей с фазным ротором регулирование тормозного момента можно производить также введением дополнительного сопротивления в цепь ротора. Эффект от введения добавочного сопротивления аналогичен тому, которое имеет место при пуске асинхронного двигателя: благодаря улучшению ф повышается критическое скольжение двигателя и увеличивается тормозной момент при больших скоростях вращения.

В режиме динамического торможения обмотки статора питаются от источника постоянного тока. Следует также иметь в виду, что в схеме динамического торможения ток / д т протекает (при соединении обмоток в звезду) не по трем, а по двум фазным обмоткам.

Для расчета характеристик нужно заменить реальный / эквивалентным током / , который, протекая по трем фазным обмоткам,

создает ту же намагничивающую силу, что и ток I . Для схемы на рис. 6.12,6 1 =0,816/ , а для схемы на рис. 6.12,в I =0,472/ .

Упрощенная формула для приближенного расчета механических характеристик (не учитывающая насыщение двигателя) подобна формуле Клосса для двигательного режима:

где - критический момент в режиме динамического торможения;

Следует подчеркнуть, что критическое скольжение в режиме динамического торможения существенно меньше критического скольжения в двигательном режиме, так как » к. Для получения максимального тормозного момента, равного максимальному моменту в двигательном режиме ток / экв должен в 2-4 раза превышать номинальный ток намагничивания / 0 . Напряжение источника питания постоянного тока будет значительно меньше номинального напряжения и примерно равно дт =(2, ...4)/ экв,.

Энергетически в режиме динамического торможения асинхронный двигатель работает как синхронный генератор, нагруженный на сопротивление роторной цепи двигателя. Вся механическая мощность, поступающая на вал двигателя при торможении, преобразуется в электрическую и идет на нагрев сопротивлений роторной цепи. Торможение противовключением может быть в двух случаях:

  • когда при работе двигателя необходимо его экстренно остановить, и для этого меняют порядок чередования фаз питания обмоток статора двигателя;
  • когда электромеханическая система движется в отрицательном направлении под действием спускаемого груза, а двигатель включается в направлении подъема, чтобы ограничить скорость спуска (режим протягивающего груза).

В обоих случаях электромагнитное поле статора и ротор двигателя вращаются в разные стороны. Скольжение двигателя в режиме про-

тивовключения всегда больше единицы:

В первом случае (рис. 6.14) двигатель, работавший в точке 1, после изменения порядка чередования фаз двигателя переходит в тормозной режим в точке Г, и скорость привода быстро снижается под действием тормозного момента М Т и статического М с. При замедлении до скорости, близкой к нулю, двигатель необходимо отключить, иначе он будет разгоняться в противоположном направлении вращения.

Рис. 6.14.

Во втором случае после снятия механического тормоза двигатель, включенный в направлении вверх, под действием силы тяжести спускаемого груза будет вращаться в противоположном направлении со скоростью, соответствующей точке 2. Работа в режиме противовключения под действием протягивающего груза возможна при использовании двигателей с фазным ротором. При этом в цепь ротора вводят значительное добавочное сопротивление, которому соответствует характеристика 2 на рис. 6.14.

Энергетически режим противовключения крайне неблагоприятен. Ток в этом режиме для асинхронных короткозамкнутых двигателей превосходит пусковой, достигая 10-кратного значения. Потери в роторной цепи двигателя складываются из потерь короткого замыкания двигателя и мощности, которая передается на вал двигателя при торможении: АР п = Л/ Т со 0 + М т (о.

Для короткозамкнутых двигателей режим противовключения возможен только в течение нескольких секунд. При использовании двигателей с фазным ротором в режиме противовключения обязательно включение в цепь ротора добавочного сопротивления. В этом случае потери энергии остаются такими же значительными, но они выносятся из объема двигателя в роторные сопротивления.

38) Механическая характеристика асинхронного двигателя.

Механическая характеристика . Зависимость частоты вращения ротора от нагрузки (вращающегося момента на валу) называется механической характеристикой асинхронного двигателя (рис. 262, а). При номинальной нагрузке частота вращения для различных двигателей обычно составляет 98-92,5 % частоты вращения n 1 (скольжение s ном = 2 – 7,5 %). Чем больше нагрузка, т. е. вращающий момент, который должен развивать двигатель, тем меньше частота вращения ротора. Как показывает кривая

Рис. 262. Механические характеристики асинхронного двигателя: а - естественная; б - при включении пускового реостата

на рис. 262, а, частота вращения асинхронного двигателя лишь незначительно снижается при увеличении нагрузки в диапазоне от нуля до наибольшего ее значения. Поэтому говорят, что такой двигатель обладает жесткой механической характеристикой.

Наибольший вращающий момент M max двигатель развивает при некоторое скольжении s kp , составляющем 10-20%. Отношение M max /M ном определяет перегрузочную способность двигателя, а отношение М п /М ном - его пусковые свойства.

Двигатель может устойчиво работать только при обеспечении саморегулирования, т. е. автоматическом установлении равновесия между приложенным к валу моментом нагрузки М вн и моментом М, развиваемым двигателем. Этому условию соответствует верхняя часть характеристики до достижения M max (до точки В). Если нагрузочный момент М вн превысит момент M max , то двигатель теряет устойчивость и останавливается, при этом по обмоткам машины будет длительно проходить ток в 5-7 раз больше номинального, и они могут сгореть.

При включении в цепь обмоток ротора пускового реостата получаем семейство механических характеристик (рис. 262,б). Характеристика 1 при работе двигателя без пускового реостата называется естественной. Характеристики 2, 3 и 4, получаемые при подключении к обмотке ротора двигателя реостата с сопротивлениями R 1п (кривая 2), R 2п (кривая 3) и R 3п (кривая 4), называют реостатными механическими характеристиками. При включении пускового реостата механическая характеристика становится более мягкой (более крутопадающей), так как увеличивается активное сопротивление цепи ротора R 2 и возрастает s кp . При этом уменьшается пусковой ток. Пусковой момент М п также зависит от R 2 . Можно так подобрать сопротивление реостата, чтобы пусковой момент М п был равен наибольшему М max .

В двигателе с повышенным пусковым моментом естественная механическая характеристика приближается по своей форме к характеристике двигателя с включенным пусковым реостатом. Вращающий момент двигателя с двойной беличьей клеткой равен сумме двух моментов, создаваемых рабочей и пусковой клетками. Поэтому характеристику 1 (рис. 263) можно получить путем суммирования характеристик 2 и 3, создаваемых этими клетками. Пусковой момент М п такого двигателя значительно больше, чем момент М’ п обычного короткозамкнутого двигателя. Механическая характеристика двигателя с глубокими пазами такая же, как и у двигателя с двойной беличьей клеткой.

НА ВСЯКИЙ СЛУЧАЙ РАБОЧУЮ ХАРАКТЕРИСТИКУ!!!

Рабочие характеристики. Рабочими характеристиками асинхронного двигателя называются зависимости частоты вращения n (или скольжения s), момента на валу М 2 , тока статора I 1 коэффициента полезного действия? и cos? 1 , от полезной мощности Р 2 = Р mx при номинальных значениях напряжения U 1 и частоты f 1 (рис. 264). Они строятся только для зоны практической устойчивой работы двигателя, т. е. от скольжения, равного нулю, до скольжения, превышающего номинальное на 10-20%. Частота вращения n с ростом отдаваемой мощности Р 2 изменяется мало, так же как и в механической характеристике; вращающий момент на валу М 2 пропорционален мощности Р 2 , он меньше электромагнитного момента М на значение тормозящего момента М тр, создаваемого силами трения.

Ток статора I 1 , возрастает с увеличением отдаваемой мощности, но при Р 2 = 0 имеется некоторый ток холостого хода I 0 . К. п. д. изменяется примерно так же, как и в трансформаторе, сохраняя достаточно большое значение в сравнительно широком диапазоне нагрузки.

Наибольшее значение к. п. д. для асинхронных двигателей средней и большой мощности составляет 0,75-0,95 (машины большой мощности имеют соответственно больший к. п. д.). Коэффициент мощности cos? 1 асинхронных двигателей средней и большой мощности при полной нагрузке равен 0,7-0,9. Следовательно, они загружают электрические станции и сети значительными реактивными токами (от 70 до 40% номинального тока), что является существенным недостатком этих двигателей.

Рис. 263. Механическая характеристика асинхронного двигателя с повышенным пусковым моментом (с двойной беличьей клеткой)

Рис. 264. Рабочие характеристики асинхронного двигателя

При нагрузках 25-50 % номинальной, которые часто встречаются при эксплуатации различных механизмов, коэффициент мощности уменьшается до неудовлетворительных с энергетической точки зрения значений (0,5-0,75).

При снятии нагрузки с двигателя коэффициент мощности уменьшается до значений 0,25-0,3, поэтому нельзя допускать работу асинхронных двигателей при холостом ходе и значительных недогрузках.

Работа при пониженном напряжении и обрыве одной из фаз. Понижение напряжения сети не оказывает существенного влияния на частоту вращения ротора асинхронного двигателя. Однако в этом случае сильно уменьшается наибольший вращающий момент, который может развить асинхронный двигатель (при понижении напряжения на 30% он уменьшается примерно в 2 раза). Поэтому при значительном падении напряжения двигатель может остановиться, а при низком напряжении - не включиться в работу.

На э. п. с. переменного тока при уменьшении напряжения в контактной сети соответственно уменьшается и напряжение в трехфазной сети, от которой питаются асинхронные двигатели, приводящие во вращение вспомогательные машины (вентиляторы, компрессоры, насосы). Для того чтобы обеспечить нормальную работу асинхронных двигателей при пониженном напряжении (они должны нормально работать при уменьшении напряжения до 0,75U ном), мощность всех двигателей вспомогательных машин на э. п. с. берется примерно в 1,5-1,6 раза большей, чем это необходимо для привода их при номинальном напряжении. Такой запас по мощности необходим также из-за некоторой несимметрии фазных напряжений, так как на э. п. с. асинхронные двигатели питаются не от трехфазного генератора, а от расщепителя фаз. При несимметрии напряжений фазные токи двигателя будут неодинаковы и сдвиг между ними по фазе не будет равен 120°. В результате по одной из фаз будет протекать больший ток, вызывающий увеличенный нагрев обмоток данной фазы. Это заставляет ограничивать нагрузку двигателя по сравнению с работой его при симметричном напряжении. Кроме того, при несимметрии напряжений возникает не круговое, а эллиптическое вращающееся магнитное поле и несколько изменяется форма механической характеристики двигателя. При этом уменьшаются его наибольший и пусковой моменты. Несимметрию напряжений характеризуют коэффициентом несимметрии, который равен среднему относительному (в процентах) отклонению напряжений в отдельных фазах от среднего (симметричного) напряжения. Систему трехфазных напряжений принято считать практически симметричной, если этот коэффициент меньше 5 %.

При обрыве одной из фаз двигатель продолжает работать, но по неповрежденным фазам будут протекать повышенные токи, вызывающие увеличенный нагрев обмоток; такой режим не должен допускаться. Пуск двигателя с оборванной фазой невозможен, так как при этом не создается вращающееся магнитное поле, вследствие чего ротор двигателя не будет вращаться.

Использование асинхронных двигателей для привода вспомогательных машин э. п. с. обеспечивает значительные преимущества по сравнению с двигателями постоянного тока. При уменьшении напряжения в контактной сети частота вращения асинхронных двигателей, а следовательно, и подача компрессоров, вентиляторов, насосов практически не изменяются. В двигателях же постоянного тока частота вращения пропорциональна питающему напряжению, поэтому подача этих машин существенно уменьшается.

Механические характеристики асинхронных двигателей

Асинхронные двигатели являются основными двигателями, которые наиболее широко используются как в промышленности, так и в агропромышленном производстве. Они обладают существенными преимуществами перед другими типами двигателей: просты в эксплуатации, надежны и имеют низкую стоимость.

В трехфазном асинхронном двигателе при подключении обмотки статора к сети трехфазного переменного напряжения создается вращающееся магнитное поле, которое, пересекая проводники обмотки ротора, наводит в них ЭДС, под воздействием которой в роторе появляются ток и магнитный поток. Взаимодействие магнитных потоков статора и ротора создает вращающий момент двигателя. Появление в обмотке ротора ЭДС, следовательно, и вращающего момента возможно только при наличии разности между скоростями вращения магнитного поля статора и ротора. Это различие в скоростях называют скольжением.

Скольжение асинхронного двигателя - это мера того, насколько ротор отстает в своем вращении от вращения магнитного поля статора. Оно обозначается буквой S и определяется по формуле

, (2.17)

где w 0 - угловая скорость вращения магнитного поля статора (синхронная угловая скорость двигателя); w - угловая скорость ротора; ν – частота вращения двигателя в относительных единицах.

Скорость вращения магнитного поля статора зависит от частоты тока питающей сети f и числа пар полюсов р двигателя: . (2.18)

Уравнение механической характеристики асинхронного двигателя можно вывести на основе упрощенной схемы замещения, приведенной на рис.2.11. В схеме замещения приняты следующие обозначения: U ф - первичное фазное напряжение; I 1 - фазный ток в обмотках статора; I 2 ́ - приведенный ток в обмотках ротора; X 1 – реактивное сопротивление обмотки статора; R 1 , R 1 2 – активные сопротивления в обмотках соответственно статора и приведенного ротора; X 2 ΄- приведенное реактивное сопротивление в обмотках ротора; R 0 , X 0 - активное и реактивное сопротивления контура намагничивания; S – скольжение.

В соответствии со схемой замещения на рис.2.11 выражение для тока ротора имеет вид

Рис. 2.11. Схема замещения асинхронного двигателя

Вращающий момент асинхронного двигателя может быть определен из выражения Мw 0 S=3(I 2 ΄) 2 R 2 ΄ по формуле

Подставив значение тока I 2 ΄ из формулы (2.19) в формулу (2.20), определяем вращающий момент двигателя в зависимости от скольжения, т.е. аналитическое выражение механической характеристики асинхронного двигателя имеет вид

График зависимости M= f(S) для двигательного режима представлен на рис.2.12. В процессе разгона момент двигателя изменяется от пускового M n до максимального момента, который называется критическим моментом M к . Скольжение и скорость двигателя, соответствующие наибольшему (максимальному) моменту, называют критическими и обозначают соответственно S к, w к . Приравняв производную нулю в выражении (2.21), получим значение критического скольжения S k , при котором двигатель развивает максимальный момент:

где Х к =(Х 1 +Х 2 ΄) – реактивное сопротивление двигателя.

Рис.2.12. Естественная механическая характеристика асинхронного электродвигателя Рис.2.13. Механические характеристики асинхронного электродвигателя при изменении напряжения сети

Для двигательного режима S к берется со знаком “плюс”, для сверхсинхронного - со знаком “минус”.

Подставив значение S к (2.22) в выражение (2.21), получим формулы максимального момента:

а) для двигательного режима

б) для сверхсинхронного торможения

(2.24)

Знак “плюс” в равенствах (2.22) и (2.23) относится к двигательному режиму и к торможению противовключением; знак “минус” в формулах (2.21), (2.22) и (2.24) - к сверхсинхронному режиму двигателя, работающего параллельно с сетью (при w>w 0 ).

Как видно из (2.23) и (2.24), максимальный момент двигателя, работающего в режиме сверхсинхронного торможения, будет больше по сравнению с двигательным режимом из-за падения напряжения на R 1 (рис. 2.11).

Если выражение (2.21) разделить на (2.23) и произвести ряд преобразований с учетом уравнения (2.22), можно получить более простое выражение для зависимости M= f(S) :

где коэффициент.

Пренебрегая активным сопротивлением обмотки статора R 1 , т.к. у асинхронных двигателей мощностью более 10 кВт сопротивление R 1 значительно меньше Х к , можно приравнять а ≈ 0 , получаем более удобную и простую для расчетов формулу определения момента двигателя по его скольжению (формула Клосса):

. (2.26) Если в выражение (2.25) вместо текущих значений M и S подставить номинальные значения и обозначить кратность моментов M к /M н через k max , получим упрощенную формулу для определения критического скольжения:

В (2.27) любой результат решения под корнем брать со знаком “+”, ибо при знаке “-” решение данного уравнения не имеет смысла. Уравнения (2.21), (2.23), (2.24), (2.25) и (2.26) являются выражениями, описывающими механическую характеристику асинхронного двигателя (рис. 2.12).

Искусственные механические характеристики асинхронного двигателя можно получить за счет изменения напряжения или частоты тока в питающей сети либо введения добавочных сопротивлений в цепь статора или ротора.

Рассмотрим влияние каждого из названных параметров (U, f, R д) на механические характеристики асинхронного двигателя.

Влияние напряжения питающей сети. Анализ уравнений (2.21) и (2.23) показывает, что изменение напряжения сети влияет на момент двигателя и не влияет на его критическое скольжение. При этом момент, развиваемый двигателем, изменяется пропорционально квадрату напряжения:

М≡ kU 2 , (2.28)

где k – коэффициент, зависящий от параметров двигателя и скольжения.

Механические характеристики асинхронного двигателя при изменении напряжения сети представлены на рис 2.13. В данном случае U н = U 1 >U 2 >U 3 .

Влияние добавочного внешнего активного сопротивления, включенного в цепь статора. Добавочные сопротивления вводят в цепь статора для уменьшения пусковых значений тока и момента (рис.2.14а). Падение напряжения на внешнем сопротивлении является в данном случае функцией тока двигателя. При пуске двигателя, когда величина тока большая, напряжение на обмотках статора снижается.

Рис.2.14. Схема включения (а) и механические характеристики (б) асинхронного двигателя при включении активного сопротивления в цепь статора

При этом согласно уравнениям (2.21), (2.22) и (2.23) изменяются пусковой момент М п , критический момент М к и угловая скорость ω к . Механические характеристики при различных добавочных сопротивлениях в цепи статора представлены на рис.2.14б, где R д2 >R д1 .

Влияние добавочного внешнего сопротивления, включенного в цепь ротора . При включении добавочного сопротивления в цепь ротора двигателя с фазным ротором (рис.2.15а) его критическое скольжение повышается, что объясняется выражением .

Рис.2.15. Схема включения (а) и механические характеристики (б) асинхронного двигателя с фазным ротором при включении добавочного сопротивления в цепь ротора

В выражение (2.23) величина R / 2 не входит, так как эта величина не влияет на М К, поэтому критический момент остается неизменным при любом R / 2 . Механические характеристики асинхронного двигателя с фазным ротором при различных добавочных сопротивлениях в цепи ротора представлены на рис.2.15б.

Влияние частоты тока питающей сети . Изменение частоты тока влияет на величину индуктивного сопротивления X к асинхронного двигателя и, как видно из уравнений (2.18), (2.22), (2.23) и (2.24), оказывает влияние на синхронную угловую скорость w 0 , критическое скольжение S к и критический момент M к . Причем ; ; w 0 ºf , где C 1 , C 2 - коэффициенты, определяемые параметрами двигателя, не зависящими от частоты тока f .

Механические характеристики двигателя при изменении частоты тока f представлены на рис.2.16.

0 ω К1 ω К2 ω К3 ω f H > f 1
Рис.2.16. Механические характеристики асинхронного двигателя при изменении частоты тока питающей сети

Новое на сайте

>

Самое популярное