Домой Стойка Расчет усилителя на мощном транзисторе. Расчет усилителя с общим эмиттером. Трекаскадный УНЧ с непосредственной связью

Расчет усилителя на мощном транзисторе. Расчет усилителя с общим эмиттером. Трекаскадный УНЧ с непосредственной связью

АНАЛИТИЧЕСКИЙ ОБЗОР

Усилители низкой частоты основаны на биполярных и полевых транзисторах в дискретном или интегральном исполнении.В качестве источника входного сигнала в усилителях низкой частоты может входить любой сигнал (датчик, предыдущий усилитель, микрофон и др.) Большинство из источников входного сигнала развивают очень низкое напряжение. Подавать его непосредственно на каскад усиления мощности не имеет смысла, т. к. при слабом управляющем напряжении невозможно получить значительные изменения выходного тока, а следовательно, выходной мощности. В состав структурной схемы усилителя, кроме выходного каскада, отдающего требуемую мощность, входят и каскады предварительного усиления.

Эти каскады принято классифицировать по характеру сопротивления нагрузки в выходной цепи транзистора. Наибольшее применение получили резистивные усилительные каскады, сопротивлением нагрузки которых служит резистор. В качестве нагрузки транзистора может быть использован и трансформатор. Такие каскады называют трансформаторными.

В каскадах предварительного усиления на биполярных транзисторах чаще других используется схема с общим эмиттером, которая обладает высоким коэффициентом усиления по напряжению и мощности, сравнительно большим входным сопротивлением и допускает использование одного общего источника питания для цепей эмиттера и коллектора.

Простейшая схема резистивного усилительного каскада с общим эмиттером и питанием от одного источника показана на рисунке 1.

Рисунок 1 - Простейшая схема резистивного усилительного каскада

Данная схема имеет название схемы с фиксированным базовым током. Смещение фиксированным током базы отличается минимальным числом деталей и малым потреблением тока от источника питания. Кроме того, сравнительно большое сопротивление резистора R б практически не влияет на величину входного сопротивления каскада. Однако этот способ смещения пригоден лишь тогда, когда каскад работает при малых колебаниях температуры транзистора. Кроме того, большой разброс и нестабильность параметров b даже у однотипных транзисторов делают режим работы каскада неустойчивым при смене транзистора, а также с течением времени.

Более эффективной является схема с фиксированным напряжением смещения на базе, представленная на рисунке 2.

Рисунок 2 – Схема с делителем напряжения

В этой схеме резисторы и подключенные параллельно источнику питания Е к, образуя тем самым делитель напряжения. Делитель, образованный резисторами и должен обладать достаточно большим сопротивлением, в противном случае входное сопротивление каскада окажется малым.

При построении схем транзисторных усилителей необходимо принимать меры для стабилизации положения рабочей точки на характеристиках. Причина, по которой приходится прибегнуть к данным мерам является влияние температуры. Есть несколько вариантов так называемой термостабилизации режимов работы транзисторных каскадов. Наиболее распространенные из вариантов представлены на рисунках 3,4,5.

В схеме (см. рисунок 3) терморезистор с отрицательным температурным коэффициентом сопротивления включен в базовую цепь таким образом, что при повышении температуры происходит уменьшение отрицательного напряжения на базе за счет уменьшения сопротивления терморезистора. При этом происходит уменьшение тока базы, а следовательно, и тока коллектора.

Рисунок 3 - Схема с терморезистором

Одна из возможных схем термостабилизации с помощью полупроводникового диода показана на рисунке 4.


Рисунок 4 – Схема термостабилизации с помощью полупроводникового диода

В этой схеме диод включен в обратном направлении, а температурная характеристика обратного тока диода должна быть аналогична температурной характеристике обратного тока коллектора транзистора. При смене транзистора стабильность ухудшается из-за разброса величины обратного тока коллектора.

Наибольшее распространение получила схема термостабилизации режима, показанная на рисунке 5.

Рисунок 5 – Схема с цепью эмиттерной стабилизации RэСэ

В этой схему навстречу фиксированному прямому напряжению смещения, снимаемому с резистора включено напряжение, возникающее на резисторе R э при прохождении через него тока эмиттера. Пусть, например, при увеличении температуры постоянная составляющая коллекторного тока возрастет. Увеличение тока коллектора приведет к увеличению тока эмиттера и падению напряжения на резисторе R э . В результате напряжение между эмиттером и базой уменьшиться, что приведет к уменьшению тока базы, а следовательно, тока коллектора. В большинстве случаев резистор R э шунтируется конденсатором большой емкости. Это делается для отвода переменной составляющей тока эмиттера от резистора R э .

3 СОСТАВЛЕНИЕ СТРУКТУРНОЙ СХЕМЫ

Для проектируемого усилителя целесообразно применить схему, включающую в себя делитель напряжения, разделительные емкостные элементы(конденсаторы).

Делитель напряжения предназначен для смещения напряжения на базе. Делитель состоит из сопротивлений R б1 и R б2 . Сопротивление R б1 подключается к положительному контакту источника постоянного напряжения Ек параллельно коллекторному сопротивлению R к , а R б2 между ветвью базы и отрицательным контактом источника постоянного напряжения Ек.

Разделительные конденсаторы служат для отсекания постоянной составляющей сигнала по току(т.е. функция этих элементов не пропускать постоянный ток). Располагаются они между каскадами усилителя, между источником сигнала и каскадами, а также между последним каскадом усилителя и нагрузкой(потребителем усиленного сигнала).

Помимо этого используются конденсаторы в цепи эмитерной стабилизации. Подключаются параллельно эмитерному сопротивлению Rэ.

Служат для отвода переменной составляющей сигнала от сопротивления эмиттера.

Принцип действия двухкаскадногоусилителя представлен на рисунке 6.


Рисунок 6- структурная схема двухкаскадного усилителя

От источника сигнала на первый каскад усилителя подается слабый сигнал, который усиливается на транзисторе за счет постоянного напряжения питания, получаемого от источника питания. Далее уже в несколько раз усиленный сигнал попадает на вход второго каскада, где

Также посредствам напряжения питания усиливается до нужного уровня сигнала, после чего передается к потребителю (в данном случае-нагрузке).

Задание:

Разработать схему предварительного усилителя напряжения низкой частоты средней мощности с заданными параметрами:

Амплитудное значение напряжения на выходе усилителя Uвых = 6 В;

Амплитудное значение сигнала источника Uвх = 0,15 В;

Напряжение источника постоянного напряжения в цепи коллектора Ек = 20 В;

Сопротивление в цепи нагрузки усилителя Rн = 3,3 кОм;

Диапазон усиливаемых частот F н F в =20 Гц - 20000 Гц;

Коэффициент частотных искажений М в = 1,18;

Внутреннее сопротивления источника сигнала Rи = 130 Ом.

Определим максимальное напряжение коллектор – эмиттер Uкэ, должно удовлетворять условию:

Uкэмах ≥ 1,2 × Ек.

Uкэмах ≥ 1,2 ×20=24 В.

По условиям подходит транзистор ГТ 404А (Приложение А)

h 21э = 30 ÷ 80

Рисунок 7 – Схема транзисторного усилительного каскада с общим эмиттером

4 РАСЧЕТ ТРАНЗИСТОРНОГО УСИЛИТЕЛЯ

4.1 Первый каскад.

4.1.1Расчет усилителя по постоянному току

При расчете усилителя используем графоаналитический метод расчета.

Первое: выбираем рабочую точку транзистора на входной вольт - амперной характеристике ВАХ (см. приложение А). Из точки на ветви Uбэп проведем перпендикуляр до пересечения с графиком входной кривой. Эта точка являться точкой покоя базы. Опуская из нее перпендикуляр к оси Iб, найдем постоянный ток базы Iбп, мА

На оси напряжения Uбэ определим минимальное Uбэ мин и максимальное Uбэ макс значения напряжения, отложив в обе стороны отрезки равные Umвх. От полученных значений проведем перпендикуляры до пересечения с кривой графика, а от точек пересечения с графиком-до оси тока базы Iб.

На графике семейства выходных характеристик определим положение рабочей точки, проведя из точки Iкп на оси Iк горизонтальную прямую до пересечения с некоторой ветвью из семейства токов базы (см. приложение Б). Это будет точкой покоя П коллекторной цепи. Опустим перпендикуляр на ось напряжений Uкэп, где получим точку покоя рабочего напряжения.

Построим статическую нагрузочную прямую по двум точкам, одна из которых является П, а вторая на оси Uкэ равная Ек. Построив нагрузочную прямую, при её пересечении с осью коллекторного тока, получаеся точка Iкз - это фиктивная точка, которая имеет смысл тока протекавшего бы при короткозамкнутом транзисторе (перемычке).

Расчет сопротивлений резисторов R б1 и R б2 (Ом) делителя напряжения

Ток делителя выберем в пределах (8 ÷ 10) :

4.1.2 Динамический расчет каскада.

Рассчитаем коэффициент усиления по напряжению по формуле:

Первым шагом на этом этапе необходимо привести напряжение источника сигнала и его внутреннее сопротивление «ко входу» первого каскада, т.е. найти эквивалентные напряжение и сопротивление действующие на базе первого транзистора. Для этого найдем величину параллельного сопротивления базовой цепи переменной составляющей входного тока R б по формуле:

Параллельно сопротивлению Rб будет подключено входное сопротивление по переменному току (динамическое) транзистора, которое определяется по входной ВАХ, как отношение приращений входного напряжения к току, т.е.:

Динамические входные токи:

Так как сопротивление в коллекторной цепи изменилось по переменному сигналу, необходимо пересчитать и построить динамическую нагрузочную прямую, которая будет пролегать по двум точкам на выходной характеристике (приложение А).

Реально нагрузочный динамический диапазон, как следует из приложения А, будет находитьссля в пределах двух ветвей базового тока Iбд 1 и Iбд 2 1 и Uкд 2

7,5<40

Следут добавить второй каскад.

Для этого рассчитаем:

4.2. Второй каскад

4.2.1 Расчет усилителя по постоянному току

Для второго каскада выберем транзистор средней мощности. По всем параметрам подходит ГТ 404В h 21э = 30 ÷ 80.

Т.к. входная ВАХ одинаковая у ГТ 404А и ГТ 404В, то начальные будут одинаковые. Аналогично строим график и берем значения.

Также выберем рабочую точку (см. приложение Г).

Сопротивление Rэ предназначено для термокомпенсации рабочего режима каскада и выбирается в пределах (0.1.-0.3)Rк.

Ток делителя для транзистора средней мощности следует выбрать (2 ÷ 3) Iбп

Рассчитаем сопротивления резисторов R б3 и R б4 , Ом делителя напряжения

4.2.2Динамический расчет каскада.

Найдем величину эквивалентного сопротивления базовой цепи переменной составляющей входного тока R б по формуле

Входное сопротивление по переменному току (динамическое) транзистора равно:

Параллельное соединение сопротивлений Rвх и Rб будет равно:

Тогда эквивалентный переменный сигнал на входе транзистора будет равен:

Определим минимальное и максимальное динамическое значение входного напряжения по формуле:

Динамические входные токи:

Рассчитаем сопротивление нагрузки, которое будет найдено из выражения:

Так как сопротивление в коллекторной цепи изменилось по переменному сигналу, необходимо пересчитать и построить динамическую нагрузочную прямую, которая будет пролегать по двум точкам на выходной характеристике (Приложение Г).

Первая точка останется, как и для статического режима - точка П. Вторая точка (фиктивная) должна лежать на ординате Iк и вычислим по формуле:

Реально нагрузочный динамический диапазон, как следует из рисунка 2.14, будет находиться в пределах двух ветвей базового тока Iбд 1 и Iбд 2 . Диапазон изменения выходного напряжения также изменится и будет, в соответствии с динамической нагрузочной прямой, составлять Uкд 1 и Uкд 2 . Тогда, фактический коэффициент усиления каскада определим из выражения:

Рассчитаем реальное усиление:

4.3 Расчет разделительных конденсаторов и емкости шунтирующего конденсатора

1-ый каскад:

2-ой каскад:

Для второго каскада (по тем же формулам, что и для первого каскада):

5 ЗАКЛЮЧЕНИЕ

При выполнении данной курсовой работы был разработан усилитель на транзисторах ГТ404А и ГТ404В, (рассчитаны 2 каскада в схеме усилителя). Получена принципиальная электрическая схема усилителя. Коэффициент усиления напряжения равен 40, что удовлетворяет условию.

Литература

1 Бочаров Л.И., Жебряков С.К., Колесников И.Ф. Расчет электронных устройств на транзисторах. – М. : Энергия, 1978.

2 Виноградов Ю.В. Основы электронной и полупроводниковой техники. – М. : Энергия, 1972.

3 Герасимов В.Г., Князев О.М. и др. Основы промышленной электроники. – М. : Высшая школа, 1986.

4 Карпов В.И. Полупроводниковые компенсационные стабилизаторы напряжения и тока. – М. : Энергия, 1967.

5 Цыкин Г.С. Усилительные устройства. – М. : Связь, 1971.

6 Малинин Р.М. Справочник по транзисторным схемам. – М. : Энергия,1974.

7 Назаров С.В. Транзисторные стабилизаторы напряжения. – М. : Энергия, 1980.

8 Цыкина Л.В. Электронные усилители. – М. : Радио и связь, 1982.

9 Руденко В.С. Основы преобразовательной техники. – М. : Высшая школа, 1980.

10 Горюнов Н.Н. Полупроводниковые транзисторы. Справочник – М. : Энергоатомиздат, 1983

  • 1. Выбираем тип транзисторов. Так как напряжение питания положительное, то для УНТ следует выбирать биполярные транзисторы структуры n-p-n. Должны выполняться условия:
    • а) В,
    • б) мА

В нашем примере выбираем транзисторы типа КТ3102A со следующими параметрами: в = 100; U к.э.макс.доп = 50В; I к.макс.доп. = 100мА; P к.макс.доп = 250мВт.

2. Определяем величину тока покоя в цепи коллектора по формуле:

3. Находим сопротивление нагрузки в цепи коллектора (рис. 1). При выборе величины сопротивления R3 в цепи коллектора необходимо удовлетворять двум противоречивым требованиям: с одной стороны, желательно, чтобы сопротивление R3 было возможно больше по сравнению с величиной входного сопротивления последующего каскада. С другой стороны, увеличение R3 при заданном токе коллектора приводит к тому, что падение напряжения на этом сопротивлении увеличивается, а напряжение между коллектором и эмиттером Uкэ уменьшается до недопустимо малой величины (в течение той части периода усиливаемого напряжения, когда коллекторный ток возрастает, напряжение Uкэ может упасть до нуля и транзистор перестанет усиливать). С учетом этих требований расчетная формула для определения R3 имеет вид:

Таким образом, с учётом допустимой мощности рассеяния рабочая точка выбрана правильно.

Мощность, рассеиваемая на резисторе R 3 , cоставляет:

4. Определяем сопротивление резистора R4в цепи термостабилизации по формуле:

Мощность, рассеиваемая на резисторе R 4 , равна

При этом принимают ток эмиттера в режиме покоя I Эр примерно равным I кр. С учетом найденных значений R 3 , R 4 , Р R3 и Р R4 выбираем стандартные значения и тип резисторов R 3 и R 4 .

5. Находим емкость конденсатора С3:

где F н выражается в герцах,

R 3 -- в омах,

С 3 -- в микрофарадах.

Рабочее напряжение конденсатора С 3 должно превышать максимальное напряжение на резисторе R 4 . В транзисторных УНЧ обычно используются электролитические конденсаторы типа К50-6, К50-7, К50-9, К50-12, К50-15 и др.

6. Находим напряжение между коллектором и эмиттером транзистора в режиме покоя:

7. Определяем элементы делителя напряжения в цепи базы R 1 и R 2 (рис. 1). Принимаем падение напряжения на сопротивлении резистора R 5 фильтра:

Находим напряжение, подводимое делителю R 1 , R 2

Выбираем ток в цепи делителя из условия

Выбор и обоснование элементной базы

На основании приведенного выше расчета выбираем элементы (для схемы электрической принципиальной):

В качестве транзисторов VТ1был взят биполярный транзистор КТ3102Е, со следующими характеристиками:

структура: n-p-n;

максимально допустимое напряжение коллектор-эмиттер: 20 В;

максимально допустимый постоянный ток коллектора: 100 мА;

максимально допустимая рассеиваемая мощность коллектора: 250мВт;

статический коэффициент передачи тока: 400-1000;

обратный ток коллектора не более: 0,015 мкА.

В соответствии с рассчитанными номиналами резисторов в пункте 2.1. имеем:

R к = 350 Ом: МЛТ-0,125-350Ом2%;

R э = 62Ом: МЛТ-0,125-62Ом2%;

R б "= 4,4кОм: МЛТ-0,5-4,4кОм2%;

R б ""= 2,4 кОм: МЛТ-0,5-2,4кОм2%;

Курсовой проект содержит 37 листа, 23 иллюстрации, 1 таблицу.

Цель: - углубить знания студентов по курсам, связанным с темой курсового проекта;

Привить навыки самостоятельной работы с технической литературой;

Научить составлять, рассчитывать и анализировать электронные схемы;

Научить грамотно оформлять техническую документацию.

В курсовом проекте содержится краткое описание усилителей низкой частоты, их классификация, применение, основные технические решения. Также разработана структурная и электрическая принципиальная схема усилителя, и произведен ее расчет.

УСИЛИТЕЛЬ, ТРАНЗИСТОР, ВХОДНАЯ ХАРАКТЕРИСТИКА,

НЕЛИНЕЙНЫЕ ИСКАЖЕНИЯ, ВЫХОДНОЙ КАСКАД

1. Введение ………………………………………………….. 3

2. Основная часть

2.1 Аналитический обзор …………………………… 5

2.2 Составление структурной схемы усилителя …… 9

2.3 Разработка электрической принципиальной

схемы усилителя …………………………………………….. 11

2.4 Электрический расчет …………………………. ……… 14

2.5 Анализ спроектированного усилителя …………. ……... 29

3. Заключение ……………………………………………………... 30

4. Перечень ссылок ……………………………………………….. 31

5. Приложение …………………………………………………….. 32

1 Введение

Характерной особенностью современных электронных усилителей является исключительное многообразие схем, по которым они могут быть построены.

Усилители различаются по характеру усиливаемых сигналов: усилители гармонических сигналов, импульсные усилители и т. д. Также они различаются по назначение, числу каскадов, роду электропитания и другим показателям.

Однако одним из наиболее существенных классификационных признаков является диапазон частот электрических сигналов, в пределах которого данный усилитель может удовлетворительно работать. По этому признаку различают следующие основные типы усилителей:

Усилители низкой частоты, предназначенные для усиления непрерывных периодических сигналов, частотный диапазон которых лежит в пределах от десятков герц до десятков килогерц. Характерной особенностью УНЧ является то, что отношение верхней усиливаемой частоты к нижней велико и обычно составляет не менее нескольких десятков.

Усилители постоянного тока – усиливающие электрические сигналы в диапазоне частот от нуля до высшей рабочей частоты. Они позволяют усиливать как переменные составляющие сигнала, так и его постоянную составляющую.

Избирательные усилители – усиливающие сигналы в очень узкой полосе частот. Для них характерна небольшая величина отношения верхней частоты к нижней. Эти усилители могут использоваться как на низких, так и на высоких частотах и выступают в качестве своеобразных частотных фильтров, позволяющих выделить заданный диапазон частот электрических колебаний. Узкая полоса частотного диапазона во многих случаях обеспечивается применением в качестве нагрузки таких усилителей колебательного контура. В связи с этим избирательные усилители часто называют резонансными.

Широкополосные усилители, усиливающие очень широкую полосу частот. Эти усилители предназначены для усиления сигналов в устройствах импульсной связи, радиолокации и телевидения. Часто широкополосные усилители называют видеоусилителями. Помимо своего основного назначения, эти усилители используются в устройствах автоматики и вычислительной техники.

2.1 Аналитический обзор

Современные усилители низкой частоты выполняются преимущественно на биполярных и полевых транзисторах в дискретном или интегральном исполнении, причем усилители в микроисполнении отличаются от своих дискретных аналогов, главным образом, конструктивно-техническими особенностями.

В качестве источника входного сигнала в усилителях низкой частоты могут входить микрофон, звукосниматель, предыдущий усилитель. Большинство из источников входного сигнала развивают очень низкое напряжение. Подавать его непосредственно на каскад усиления мощности не имеет смысла, т. к. при слабом управляющем напряжении невозможно получить значительные изменения выходного тока, а следовательно, выходной мощности. Поэтому в состав структурной схемы усилителя, кроме выходного каскада, отдающего требуемую мощность, входят и каскады предварительного усиления.

Эти каскады принято классифицировать по характеру сопротивления нагрузки в выходной цепи транзистора. Наибольшее применение получили резистивные усилительные каскады, сопротивлением нагрузки которых служит резистор. В качестве нагрузки транзистора может быть использован и трансформатор. Такие каскады называют трансформаторными. Однако в следствии большой стоимости, значительных размеров и массы трансформатора, а также из-за неравномерности амплитудно-частотных характеристик трансформаторные каскады предварительного усиления применяются весьма редко.

В каскадах предварительного усиления на биполярных транзисторах чаще других используется схема с общим эмиттером, которая обладает высоким коэффициентом усиления по напряжению и мощности, сравнительно большим входным сопротивлением и допускает использование одного общего источника питания для цепей эмиттера и коллектора.

Простейшая схема резистивного усилительного каскада с общим эмиттером и питанием от одного источника показана на рис 1.

Рисунок 1

Данная схема получила название схемы с фиксированным базовым током. Смещение фиксированным током базы отличается минимальным числом деталей и малым потреблением тока от источника питания. Кроме того, сравнительно большое сопротивление резистора R б практически не влияет на величину входного сопротивления каскада. Однако этот способ смещения пригоден лишь тогда, когда каскад работает при малых колебаниях температуры транзистора. Кроме того, большой разброс и нестабильность параметров b даже у однотипных транзисторов делают режим работы каскада неустойчивым при смене транзистора, а также с течением времени.

Более эффективной является схема с фиксированным напряжением смещения на базе, представленная на рис 2.

В этой схеме резисторы

и подключенные параллельно источнику питания Е к составляют делитель напряжения. Делитель, образованный резисторами и должен обладать достаточно большим сопротивлением, иначе входное сопротивление каскада окажется малым.

При построении схем транзисторных усилителей приходится принимать меры для стабилизации положения рабочей точки на характеристиках. Основной дестабилизирующий фактор – влияние температуры. Существуют

Рисунок 2

различные способы термостабилизации режима работы транзисторных каскадов. Наиболее распространенные из них реализуются с помощью схем, показанных на рис 3-5.

Рисунок 3 - c терморезистором

Рисунок 4 - с диодом

Рисунок 5 - с цепочкой эмиттерной стабилизации RэСэ

В схеме на рис 3 терморезистор с отрицательным температурным коэффициентом сопротивления включен в базовую цепь таким образом, что при повышении температуры происходит уменьшение отрицательного напряжения на базе за счет уменьшения сопротивления терморезистора. При этом происходит уменьшение тока базы, а следовательно, и тока коллектора.

Одна из возможных схем термостабилизации с помощью полупроводникового диода показана на рис 4. В этой схеме диод включен в обратном направлении, а температурная характеристика обратного тока диода должна быть аналогична температурной характеристике обратного тока коллектора транзистора. При смене транзистора стабильность ухудшается из-за разброса величины обратного тока коллектора.

Наибольшее распространение получила схема термостабилизации режима, показанная на рис 5. В этой схему навстречу фиксированному прямому напряжению смещения, снимаемому с резистора

включено напряжение, возникающее на резисторе R э при прохождении через него тока эмиттера. Пусть, например, при увеличении температуры постоянная составляющая коллекторного тока возрастет. Увеличение тока коллектора приведет к увеличению тока эмиттера и падению напряжения на резисторе R э. В результате напряжение между эмиттером и базой уменьшиться, что приведет к уменьшению тока базы, а следовательно, тока коллектора. В большинстве случаев резистор R э шунтируется конденсатором большой емкости. Это делается для отвода переменной составляющей тока эмиттера от резистора R э.

2.2 Составление структурной схемы усилителя

Структурная схема представлена на рис 6.


Рисунок 6

ВхК - входной каскад

КПУ1 - первый каскад предварительного усиления

КПУ2 - второй каскад предварительного усиления

КПУ3 - третий каскад предварительного усиления

В данной статье расскажем про транзистор. Покажем схемы его подключения и расчёт транзисторного каскада с общим эмиттером.

ТРАНЗИСТОР — это полупроводниковый прибор для усиления, генерирования и преобразования электрических колебаний, выполненный на основе монокристаллического полупроводника (Si – кремния, или — германия), содержащего не менее трёх областей с различной - электронной (n ) и дырочной (p ) - проводимостью. Изобретён в 1948 американцами У. Шокли, У. Браттейном и Дж. Бардином. По физической структуре и механизму управления током различают транзисторы биполярные (чаще называют просто транзисторами) и униполярные (чаще называют полевыми транзисторами). В первых, содержащих два, или более электронно-дырочных перехода, носителями заряда служат как электроны, так и дырки, во вторых - либо электроны, либо дырки. Термн «транзистор» нередко используют для обозначения портативных радиовещательных приёмников на полупроводниковых приборах.

Управление током в выходной цепи осуществляется за счёт изменения входного напряжения или тока. Небольшое изменение входных величин может приводить к существенно большему изменению выходного напряжения и тока. Это усилительное свойство транзисторов используется в аналоговой технике (аналоговые ТВ, радио, связь и т. п.).

Биполярный транзистор

Биполярный транзистор может быть n-p-n и p-n-p проводимости. Не заглядывая во внутренности транзистора, можно отметить разницу проводимостей лишь в полярности подключения в практических схемах источников питания, конденсаторов, диодов, которые входят в состав этих схем. На рисунке справа графически изображены n-p-n и p-n-p транзисторы.

У транзистора три вывода. Если рассматривать транзистор как четырёхполюсник, то у него должно быть два входных и два выходных вывода. Следовательно, какой то из выводов должен быть общим, как для входной, так и для выходной цепи.

Схемы включения транзистора

Схема включения транзистора с общим эмиттером – предназначена для усиления амплитуды входного сигнала по напряжению и по току. При этом входной сигнал, усиливаясь транзистором, инвертируется. Другими словами фаза выходного сигнала поворачивается на 180 градусов. Эта схема, является основной, для усиления сигналов разной амплитуды и формы. Входное сопротивление транзисторного каскада с ОЭ бывает от сотен Ом до единиц килоом, а выходное — от единиц до десятков килоом.

Схема включения транзистора с общим коллектором – предназначена для усиления амплитуды входного сигнала по току. Усиления по напряжению в такой схеме не происходит. Правильнее сказать, коэффициент усиления по напряжению даже меньше единицы. Входной сигнал транзистором не инвертируется.
Входное сопротивление транзисторного каскада с ОК бывает от десятков до сотен килоом, а выходное в пределах сотни ом — единиц килоом. Благодаря тому, что в цепи эмиттера находится, как правило, нагрузочный резистор, схема обладает большим входным сопротивлением. Кроме того, благодаря усилению входного тока, она обладает высокой нагрузочной способностью. Эти свойства схемы с общим коллектором используются для согласования транзисторных каскадов — как «буферный каскад». Так как, входной сигнал, не усиливаясь по амплитуде «повторяется» на выходе, схему включения транзистора с общим коллектором ещё называют Эмиттерный повторитель .

Имеется ещё Схема включения транзистора с общей базой . Эта схема включения в теории есть, но в практике она реализуется очень тяжело. Такая схема включения используется в высокочастотной технике. Особенность её в том, что у неё низкое входное сопротивление, и согласовать такой каскад по входу сложно. Опыт в электронике у меня не малый, но говоря об этой схеме включения транзистора, я извините, ничего не знаю! Пару раз использовал как «чужую» схему, но так и не разбирался. Объясню: по всем физическим законам транзистор управляется его базой, вернее током, протекающим по пути база-эмиттер. Использование входного вывода транзистора — базы на выходе — не возможно. На самом деле базу транзистора через конденсатор «сажают» по высокой частоте на корпус, а на выходе её и не используют. А гальванически, через высокоомный резистор, базу связывают с выходом каскада (подают смещение). Но подавать смещение, по сути можно откуда угодно, хоть от дополнительного источника. Всё равно, попадающий на базу сигнал любой формы гасится через тот же самый конденсатор. Чтобы такой каскад работал, входной вывод — эмиттер через низкоомный резистор «сажают» на корпус, отсюда и низкое входное сопротивление. В общем, схема включения транзистора с общей базой — тема для теоретиков и экспериментаторов. На практике она встречается крайне редко. За свою практику в конструировании схем никогда не сталкивался с необходимостью использования схемы включения транзистора с общей базой. Объясняется это свойствами этой схемы включения: входное сопротивление — от единиц до десятков Ом, а выходное сопротивление — от сотен килоом до единиц мегаом. Такие специфические параметры — редкая потребность.

Биполярный транзистор может работать в ключевом и линейном (усилительном) режимах. Ключевой режим используется в различных схемах управления, логических схемах и др. В ключевом режиме, транзистор может находиться в двух рабочих состояниях – открытом (насыщенном) и закрытом (запертом) состоянии. Линейный (усилительный) режим используется в схемах усиления гармонических сигналов и требует поддержания транзистора в «наполовину» открытом, но не насыщенном состоянии.

Для изучения работы транзистора, мы рассмотрим схему включения транзистора с общим эмиттером, как наиболее важную схему включения.

Схема изображена на рисунке. На схеме VT – собственно транзистор. Резисторы R б1 и R б2 – цепочка смещения транзистора, представляющая собой обыкновенный делитель напряжения. Именно эта цепь обеспечивает смещение транзистора в «рабочую точку» в режиме усиления гармонического сигнала без искажений. Резистор R к – нагрузочный резистор транзисторного каскада, предназначен для подвода к коллектору транзистора электрического тока источника питания и его ограничения в режиме «открытого» транзистора. Резистор R э – резистор обратной связи, по своей сути увеличивает входное сопротивление каскада, при этом, уменьшает усиление входного сигнала. Конденсаторы С выполняют функцию гальванической развязки от влияния внешних цепей.

Чтобы Вам было понятнее, как работает биполярный транзистор, мы проведём аналогию с обычным делителем напряжения (см. рис. ниже). Для начала, резистор R 2 делителя напряжения сделаем управляемым (переменным). Изменяя сопротивление этого резистора, от нуля до «бесконечно» большого значения, мы можем получить на выходе такого делителя напряжение от нуля до значения, подаваемого на его вход. А теперь, представим себе, что резистор R 1 делителя напряжения – это коллекторный резистор транзисторного каскада, а резистор R 2 делителя напряжения – это переход транзистора коллектор-эмиттер. При этом, подавая на базу транзистора управляющее воздействие в виде электрического тока, мы изменяем сопротивление перехода коллектор-эмиттер, тем самым меняем параметры делителя напряжения. Отличие от переменного резистора в том, что транзистор управляется слабым током. Именно так и работает биполярный транзистор. Вышеуказанное изображено на рисунке ниже:

Для работы транзистора в режиме усиления сигнала, без искажения последнего, необходимо обеспечить этот самый рабочий режим. Говорят о смещении базы транзистора. Грамотные специалисты тешат себя правилом: Транзистор управляется током – это аксиома. Но режим смещения транзистора устанавливается напряжением база-эмиттер, а не током – это реальность. И у того, кто не учитывает напряжение смещения, никакой усилитель работать не будет. Поэтому в расчётах его значение должно учитываться.

Итак, работа биполярного транзисторного каскада в режиме усиления происходит при определённом напряжении смещения на переходе база-эмиттер. Для кремниевого транзистора значение напряжения смещения лежит в пределах 0,6…0,7 вольт, для германиевого – 0,2…0,3 вольта. Зная об этом понятии, можно не только рассчитывать транзисторные каскады, но и проверять исправность любого транзисторного усилительного каскада. Достаточно мультиметром с высоким внутренним сопротивлением измерить напряжение смещения база-эмиттер транзистора. Если оно не соответствует 0,6…0,7 вольт для кремния, или 0,2…0,3 вольта для германия, тогда ищите неисправность именно здесь – либо неисправен транзистор, либо неисправны цепи смещения или развязки этого транзисторного каскада.

Вышеуказанное, изображено на графике – вольтамперной характеристике (ВАХ).

Большинство из «спецов», посмотрев на представленную ВАХ скажет: Что за ерунда нарисована на центральном графике? Так выходная характеристика транзистора не выглядит! Она представлена на правом графике! Отвечу, там всё правильно, а началось это с электронно-вакуумных ламп. Раньше вольтамперной характеристикой лампы считалось падение напряжения на анодном резисторе. Сейчас, продолжают измерять на коллекторном резисторе, а на графике приписывают буквы, обозначающие падение напряжения на транзисторе, в чём глубоко ошибаются. На левом графике I б – U бэ представлена входная характеристика транзистора. На центральном графике I к – U кэ представлена выходная вольтамперная характеристика транзистора. А на правом графике I R – U R представлен вольтамперный график нагрузочного резистора R к , который обычно выдают за вольтамперную характеристику самого транзистора.

На графике имеет место линейный участок, используемый для линейного усиления входного сигнала, ограниченный точками А и С . Средняя точка – В , является именно той точкой, в которой необходимо содержать транзистор, работающий в усилительном режиме. Этой точке соответствует определённое напряжение смещения, которое при расчётах обычно берут: 0,66 вольт для транзистора из кремния, или 0,26 вольт для транзистора из германия.

По вольтамперной характеристике транзистора мы видим следующее: при отсутствии, или малом напряжении смещения на переходе база-эмиттер транзистора, ток базы и ток коллектора отсутствуют. В этот момент на переходе коллектор-эмиттер падает всё напряжение источника питания. При дальнейшем повышении напряжения смещения база-эмиттер транзистора, транзистор начинает открываться, появляется ток базы и вместе с ним растёт ток коллектора. При достижении «рабочей области» в точке С , транзистор входит в линейный режим, который продолжается до точки А . При этом, падение напряжения на переходе коллектор-эмиттер уменьшается, а на нагрузочном резисторе R к , наоборот увеличивается. Точка В – рабочая точка смещения транзистора, — это такая точка, при которой на переходе коллектор — эмиттер транзистора, как правило, устанавливается падение напряжения равное ровно половине напряжения источника питания. Отрезок АЧХ от точки С , до точки А называют рабочей областью смещения. После точки А , ток базы и следовательно ток коллектора резко возрастают, транзистор полностью открывается — входит в насыщение. В этот момент, на переходе коллектор-эмиттер падает напряжение обусловленное структурой n-p-n переходов, которое приблизительно равно 0,2…1 вольт, в зависимости от типа транзистора. Всё остальное напряжение источника питания падает на сопротивлении нагрузки транзистора – резисторе R к ., который кроме того, ограничивает дальнейший рост тока коллектора.

По нижним «дополнительным» рисункам, мы видим, как изменяется напряжение на выходе транзистора в зависимости от подаваемого на вход сигнала. Выходное напряжение (падение напряжения на коллекторе) транзистора противофазно (на 180 градусов) к входному сигналу.

Расчёт транзисторного каскада с общим эмиттером (ОЭ)

Прежде чем перейти непосредственно к расчёту транзисторного каскада, обратим внимание на следующие требования и условия:

Расчёт транзисторного каскада проводят, как правило, с конца (т.е. с выхода);

Для расчета транзисторного каскада нужно определить падение напряжения на переходе коллектор-эмиттер транзистора в режиме покоя (когда отсутствует входной сигнал). Оно выбирается таким, чтобы получить максимально неискаженный сигнал. В однотактной схеме транзисторного каскада работающего в режиме «A» это, как правило, половина значения напряжения источника питания;

В эмиттерной цепи транзистора бежит два тока — ток коллектора (по пути коллектор-эмиттер) и ток базы (по пути база-эмиттер), но так как ток базы достаточно мал, им можно пренебречь и принять, что ток коллектора равен току эмиттера;

Транзистор – усилительный элемент, поэтому справедливо будет заметить, что способность его усиливать сигналы должна выражаться какой-то величиной. Величина усиления выражается показателем, взятым из теории четырёхполюсников — коэффициент усиления тока базы в схеме включения с общим эмиттером (ОЭ) и обозначается он — h 21 . Его значение приводится в справочниках для конкретных типов транзисторов, причём, обычно в справочниках приводится вилка (например: 50 – 200). Для расчётов обычно выбирают минимальное значение (из примера выбираем значение — 50);

Коллекторное (R к ) и эмиттерное (R э ) сопротивления влияют на входное и выходное сопротивления транзисторного каскада. Можно считать, что входное сопротивление каскада R вх =R э *h 21 , а выходное равно R вых =R к . Если Вам не важно входное сопротивление транзисторного каскада, то можно обойтись вовсе без резистора R э ;

Номиналы резисторов R к и R э ограничивают токи, протекающие через транзистор и рассеиваемую на транзисторе мощность.

Порядок и пример расчёта транзисторного каскада с ОЭ

Исходные данные:

Питающее напряжение U и.п. =12 В.

Выбираем транзистор, например: Транзистор КТ315Г, для него:

P max =150 мВт; I max =150 мА; h 21 >50.

Принимаем R к =10*R э

Напряжение б-э рабочей точки транзистора принимаем U бэ = 0,66 В

Решение:

1. Определим максимальную статическую мощность, которая будет рассеиваться на транзисторе в моменты прохождения переменного сигнала, через рабочую точку В статического режима транзистора. Она должна составлять значение, на 20 процентов меньше (коэффициент 0,8) максимальной мощности транзистора, указанной в справочнике.

Принимаем P рас.max =0,8*P max =0,8*150 мВт=120 мВт

2. Определим ток коллектора в статическом режиме (без сигнала):

I к0 =P рас.max /U кэ0 =P рас.max /(U и.п. /2) = 120мВт/(12В/2) = 20мА.

3. Учитывая, что на транзисторе в статическом режиме (без сигнала) падает половина напряжения питания, вторая половина напряжения питания будет падать на резисторах:

(R к +R э )=(U и.п. /2)/I к0 = (12В/2)/20мА=6В/20мА = 300 Ом.

Учитывая существующий ряд номиналов резисторов, а также то, что нами выбрано соотношение R к =10*R э , находим значения резисторов:

R к = 270 Ом; R э = 27 Ом.

4. Найдем напряжение на коллекторе транзистора без сигнала.

U к0 =(U кэ0 + I к0 *R э )=(U и.п. — I к0 *R к ) = (12 В — 0,02А * 270 Ом) = 6,6 В.

5. Определим ток базы управления транзистором:

I б =I к /h 21 =/h 21 = / 50 = 0,8 мА.

6. Полный базовый ток определяется напряжением смещения на базе, которое задается делителем напряжения R б1 ,R б2 . Ток резистивного базового делителя должен быть на много больше (в 5-10 раз) тока управления базы I б , чтобы последний не влиял на напряжение смещения. Выбираем ток делителя в 10 раз большим тока управления базы:

R б1 ,R б2 : I дел. =10*I б = 10 * 0,8 мА = 8,0 мА.

Тогда полное сопротивление резисторов

R б1 +R б2 =U и.п. /I дел. = 12 В / 0,008 А = 1500 Ом.

7. Найдём напряжение на эмиттере в режиме покоя (отсутствия сигнала). При расчете транзисторного каскада необходимо учитывать: напряжение база-эмиттер рабочего транзистора не может превысить 0,7 вольта! Напряжение на эмиттере в режиме без входного сигнала примерно равно:

U э =I к0 *R э = 0,02 А * 27 Ом= 0,54 В,

где I к0 — ток покоя транзистора.

8. Определяем напряжение на базе

U б =U э +U бэ =0,54 В+0,66 В=1,2 В

Отсюда, через формулу делителя напряжения находим:

R б2 = (R б1 +R б2 )*U б /U и.п. = 1500 Ом * 1,2 В / 12В = 150 Ом R б1 = (R б1 +R б2 )-R б2 = 1500 Ом — 150 Ом = 1350 Ом = 1,35 кОм.

По резисторному ряду, в связи с тем, что через резистор R б1 течёт ещё и ток базы, выбираем резистор в сторону уменьшения: R б1 =1,3 кОм.

9. Разделительные конденсаторы выбирают исходя из требуемой амплитудно-частотной характеристики (полосы пропускания) каскада. Для нормальной работы транзисторных каскадов на частотах до 1000 Гц необходимо выбирать конденсаторы номиналом не менее 5 мкФ.

На нижних частотах амплитудно-частотная характеристика (АЧХ) каскада зависит от времени перезаряда разделительных конденсаторов через другие элементы каскада, в том числе и элементы соседних каскадов. Ёмкость должна быть такой, чтобы конденсаторы не успевали перезаряжаться. Входное сопротивление транзисторного каскада много больше выходного сопротивления. АЧХ каскада в области нижних частот определяется постоянной времени t н =R вх *C вх , где R вх =R э *h 21 , C вх — разделительная входная емкость каскада. C вых транзисторного каскада, это C вх следующего каскада и рассчитывается она так же. Нижняя частота среза каскада (граничная частота среза АЧХ) f н =1/t н . Для качественного усиления, при конструировании транзисторного каскада необходимо выбирать, чтобы соотношение 1/t н =1/(R вх *C вх )< в 30-100 раз для всех каскадов. При этом чем больше каскадов, тем больше должна быть разница. Каждый каскад со своим конденсатором добавляет свой спад АЧХ. Обычно, достаточно разделительной емкости 5,0 мкФ. Но последний каскад, через Cвых обычно нагружен низкоомным сопротивлением динамических головок, поэтому емкость увеличивают до 500,0-2000,0 мкФ, бывает и больше.

Расчёт ключевого режима транзисторного каскада производится абсолютно так же, как и ранее проведённый расчёт усилительного каскада. Отличие заключается только в том, что ключевой режим предполагает два состояния транзистора в режиме покоя (без сигнала). Он, или закрыт (но не закорочен), или открыт (но не перенасыщен). При этом, рабочие точки «покоя», находятся за пределами точек А и С изображённых на ВАХ. Когда на схеме в состоянии без сигнала транзистор должен быть закрыт, необходимо из ранее изображённой схемы каскада удалить резистор R б1 . Если же требуется, чтобы транзистор в состоянии покоя был открыт, необходимо в схеме каскада увеличить резистор R б2 в 10 раз от расчётного значения, а в отдельных случаях, его можно удалить из схемы.

Расчёт транзисторного каскада окончен.

Министерство образования РФ

Уральский Государственный Технический Университет

Кафедра Автоматика и управление в технических системах

РАСЧЕТ ПРЕДВАРИТЕЛЬНОГО УСИЛИТЕЛЯ

НА ТРАНЗИСТОРЕ КТ3107И

Курсовая работа по

Электронике

Студент гр. Р-291а А.С. Клыков

Преподаватель

доцент, к.т.н. В. И. Паутов

Екатеринбург 2000

1. Предварительные данные для расчета усилителя 3

2. Выбор транзистора4

3. Расчет режима транзистора по постоянному току 4

4. Выбор напряжения источника питания 5

5. Расчет элементов, обеспечивающих рабочий режим тр-ра5

6. Расчет емкостей С ф, С 1 , С 2 , С э 7

7. Результаты расчета8

8. АЧХ и ФЧХ усилителя 9

9. Список литературы 10

1. Предварительные данные для расчета усилителя

U Н = 0.2 В

R Н = 0.3 кОм

R С = 0.5 кОм

t max = 70 0 C

f н = 50 Гц

f в = 25 Гц


2. Выбор транзистора.

Для выбранного транзистора добротность D т:

где r¢ б – объемное сопротивление базы, равное 150 Ом C к – емкость коллекторного перехода

По расчетным данным и из условий: Р к max >Р к, B min ³ B необх, ¦ в ³¦ в,необх выбираем транзистор КТ3107И

3. Расчет режима транзистора по постоянному току.


Ток коллектора I к определяем по формуле:
где R вх = В * r э = 1к9 - входное сопротивление каскада Е с – источник сигнала
Напряжение на оллекторе-эмиттере U кэ:Рабочая точка транзистора =1.5 В

I 0 к = 1.82 В

4. Выбор напряжения источника питания.


Найдем R э по формуле:

где S – температурный коэффициент

R б = (5¸10) R вх = 5*1900 = 9500 Ом – общее сопротивление базы


Найдем U б:
Определим R ф:

По ГОСТу выбираем:

R 1 = 6к0 R 2 = 16к0 R э = 3к2 R ф = к45

Проверим выполнение неравенства:

I 0 к * R э + U 0 кэ + I 0 к * R к + (I 0 к + I д ) * R ф ³ Е к

5.824 + 1.5 + 2.5 + 1.179 ³ 5

11 ³ 5 – неравенство выполняется


Определим для повторителя R э2:

U Б2 = U К1 = I 0 э *R э + U 0 Кэ = 1.82мА * 3.2кОм + 1.5В = 7.32 В

U Бэ2 = r¢ б * I 0 э = 150 * 1.82мА = 0.27 В


Найдем R вх2 и R вых2:
Коэффициент усиления первого каскада:
6. Расчет емкостей С ф, С 1 , С 2 , С э.

где К СГ = 40 – коэффициент сглаживания

f П = 100 Гц – основная частота пульсации ист.питания


8. Амплитудно-частотная и фазо-частотная характеристики.
10 20 30 40 60 100 160 320 640 1280 2560 5120 10240 20480 40960 81920 163840
1 1.30103 1.47712125 1.60205999 1.77815125 2 2.20411998 2.50514998 2.80617997 3.10720997 3.40823997 3.70926996 4.01029996 4.31132995 4.61235995 4.91338994 5.21441994
62.8 125.6 188.4 251.2 376.8 628 1004.8 2009.6 4019.2 8038.4 16076.8 32153.6 64307.2 128614.4 257228.8 514457.6 1028915.2
0.2 0.4 0.6 0.8 1.2 2 3.2 6.4 12.8 25.6 51.2 102.4 204.8 409.6 819.2 1638.4 3276.8
5 2.5 1.66666667 1.25 0.83333333 0.5 0.3125 0.15625 0.078125 0.0390625 0.01953125 0.00976563 0.00488281 0.00244141 0.0012207 0.00061035 0.00030518
0.4 0.8 1.2 1.6 2.4 4 6.4 12.8 25.6 51.2 102.4 204.8 409.6 819.2 1638.4 3276.8 6553.6
4.6 1.7 0.46666667 -0.35 -1.56666667 -3.5 -6.0875 -12.64375 -25.521875 -51.1609375 -102.380469 -204.790234 -409.595117 -819.197559 -1638.39878 -3276.79939 -6553.59969
25 6.25 2.77777778 1.5625 0.69444444 0.25 0.09765625 0.02441406 0.00610352 0.00152588 0.00038147 9.5367E-05 2.3842E-05 5.9605E-06 1.4901E-06 3.7253E-07 9.3132E-08
0.16 0.64 1.44 2.56 5.76 16 40.96 163.84 655.36 2621.44 10485.76 41943.04 167772.16 671088.64 2684354.56 10737418.2 42949673
0.21242964 0.50702013 0.90618314 0.94385836 0.53803545 0.27472113 0.16209849 0.07884425 0.03915203 0.01954243 0.00976702 0.00488299 0.00244143 0.00122071 0.00061035 0.00030518 0.00015259
1.35673564 1.03907226 0.43662716 -0.33667482 -1.00269159 -1.29249667 -1.40797942 -1.49187016 -1.53163429 -1.55125265 -1.56102915 -1.56591332 -1.5683549 -1.56957562 -1.57018597 -1.57049115 -1.57064374

Новое на сайте

>

Самое популярное