Домой Салон Автоматическое зарядное устройство должно быть у каждого автолюбителя. Простое автоматическое зарядное устройство Правильное зарядное устройство с функцией разряда схема

Автоматическое зарядное устройство должно быть у каждого автолюбителя. Простое автоматическое зарядное устройство Правильное зарядное устройство с функцией разряда схема

Кому некогда «заморачиваться» со всеми нюансами зарядки автомобильного аккумулятора, следить за током зарядки, вовремя отключить, чтоб не перезарядить и т.д., можно порекомендовать простую схему зарядки автомобильного АКБ с автоматическим отключением при полной зарядке аккумулятора. В этой схеме используется один не мощный транзистор для определения напряжения на аккумуляторе.

Схема простого автоматического зарядного устройства автомобильного аккумулятора

Список необходимых деталей:

  • R1 = 4,7 кОм;
  • Р1 = 10K подстроечный;
  • T1 = BC547B, КТ815, КТ817;
  • Реле = 12В, 400 Ом, (можно автомобильное, например: 90.3747);
  • TR1 = напряжение вторичной обмотки 13,5-14,5 В, ток 1/10 от емкости АКБ (например: АКБ 60А/ч — ток 6А);
  • Диодный мост D1-D4 = на ток равный номинальному току трансформатора = не менее 6А (например Д242, КД213, КД2997, КД2999 …), установленные на радиаторе;
  • Диоды D1(параллельно реле), D5,6 = 1N4007, КД105, КД522…;
  • C1 = 100uF/25V.
  • R2, R3 — 3 кОм
  • HL1 — АЛ307Г
  • HL2 — АЛ307Б

В схеме отсутствует индикатор зарядки, контроля тока (амперметр) и ограничение зарядного тока. При желании можно поставить на выход амперметр в разрыв любого из проводов. Светодиоды (HL1 и HL2) с ограничительными сопротивлениями (R2 и R3 — 1 кОм) или лампочки параллельно С1 «сеть», а к свободному контакту RL1 «конец заряда».

Изменённая схема

Ток, равный 1/10 от ёмкости АКБ подбирается количеством витков вторичной обмотки трансформатора. При намотке вторички трансформатора необходимо сделать несколько отводков для подбора оптимального варианта зарядного тока.

Заряд автомобильного (12-ти вольтового) аккумулятора считается законченным, когда напряжение на его клеммах достигнет 14,4 вольт.

Порог отключения (14,4 вольт) устанавливается подстроечным резистором Р1 при подключенном и полностью заряженном аккумуляторе.

При зарядке разряженного аккумулятора напряжение на нём будет около 13В, в процессе зарядки ток будет падать, а напряжение возрастать. Когда напряжение на аккумуляторе достигнет 14,4 вольт, транзистор Т1 отключит реле RL1 цепь заряда будет разорвана и АКБ отключится от зарядного напряжения с диодов D1-4.

При снижении напряжения до 11,4 вольт, зарядка снова возобновляется, такой гистерезис обеспечивают диоды D5-6 в эмиттере транзистора. Порог срабатывания схемы становится 10 + 1,4 = 11,4 вольт, которые могут быть рассмотрены как для автоматического перезапуска процесса зарядки.

Такое самодельное простое автоматическое автомобильное зарядное устройство поможет Вам проконтролировать процесс зарядки, не проследить окончание зарядки и не перезарядить свой аккумулятор!

Использованы материалы сайта:homemade-circuits.com

Другой вариант схемы зарядного устройства для 12-ти вольтового автомобильного аккумулятора с автоматическим отключением по окончании зарядки

Схема немного сложнее предыдущей, но с более чётким срабатыванием.

Таблица напряжений и процент разряженности АКБ, не подключенных к зарядному устройству


П О П У Л Я Р Н О Е:

    В последние годы электронные приборы находят все большее применение в автомобильном транспорте, в том числе и приборы электронного зажигания. Прогресс автомобильных карбюраторных двигателей неразрывно связан с их дальнейшим совершенствованием. Кроме того, сейчас к приборам зажигания предъявляются новые требования, направленные на радикальное повышение надежности, обеспечение топливной экономичности и экологической чистоты двигателя.

    Мощный лабораторный блок питания с MOSFET транзистором на выходе своими руками

    В предыдущей статье мы рассматривали

Зарядное устройство (ЗУ) – приспособление для заряда электрического аккумулятора от внешнего источника энергии, обычно от сети переменного тока. Контроль за состоянием автомобильного аккумулятора включает его периодическую проверку и своевременное поддерживание в рабочем состоянии. У авто это чаще делается в зимнее время года, поскольку летом автомобильная аккумуляторная батарея (АКБ) успевает подзарядиться от генератора. В холодное время года запуск двигателя происходит труднее, и нагрузка на АКБ возрастает. Ситуация обостряется при больших перерывах между запусками двигателя.

Современное зарядное устройство для АКБ

Разнообразные схемы и устройства существуют в большом количестве, но в целом АКБ организованы на основе следующих элементов:

  • преобразователь напряжения (трансформатор или импульсный блок);
  • выпрямитель;
  • автоматический контроль заряда;
  • индикация.

Простейшее зарядное устройство

Наиболее простым является приспособление на основе трансформатора и выпрямителя, изображенное на схеме ниже. Его несложно сделать своими руками.

Схема простейшего зарядника для авто

Главной деталью устройства является трансформатор ТС-160, используемый в старых телевизорах (рисунок ниже). Соединив две его вторичные обмотки на 6,55 В каждая последовательно, можно получить на выходе 13,1 В. Максимальный ток у них составляет 7,5 А, что вполне подходит для зарядки батареи.

Внешний вид зарядного устройства, изготовленного своими руками

Оптимальная величина напряжения классического зарядного устройства составляет 14,4 В. Если взять 12 В, которые должен иметь аккумулятор, полную зарядку произвести не удастся, так как нельзя будет создать требуемый ток. Завышение зарядного напряжения приводит к выходу АКБ из строя.

В качестве выпрямителей можно использовать диоды Д242А, которые соответствуют по мощности.

Схема не обеспечивает автоматическое регулирование величины зарядного тока. Поэтому придется последовательно установить амперметр для визуального контроля.

Чтобы не сгорел трансформатор, на входе и выходе устанавливаются предохранители, соответственно на 0,5 А и 10 А. Диоды монтируются на радиаторах, так как в начальный период зарядки ток будет большим из-за низкого внутреннего сопротивления аккумулятора, что вызывает их сильный нагрев.

Когда зарядный ток уменьшится до 1 А, это означает, что АКБ полностью заряжен.

Особенности устройств

На смену устаревшим приспособлениям с ручным контролем пришли современные модели. Схемы устройств обеспечивают автоматическое поддерживание зарядного тока с выбором его требуемой величины по мере изменения состояния аккумулятора.

Современные приборы имеют заявленный зарядный ток от 6 до 9 А для АКБ емкостью 50-90 Ач, применяемых для легковых авто.

Любая АКБ заряжается током, составляющим 10 % от ее емкости. Если она равна 60 Ач, ток должен составлять 6 А, для 90 Ач – 9 А.

Выбор

  1. Способность восстановления полностью разряженного аккумулятора. Эту функцию имеют не все ЗУ.
  2. Максимальный ток зарядки. Он должен составлять 10 % от емкости батареи. У прибора должна быть функция отключения после полной зарядки, а также режима поддержки. При зарядке полностью разряженной батареи может произойти короткое замыкание. Схема прибора должна иметь защиту.

Многофункциональность и универсальность новых приборов с приемлемыми ценами делает нецелесообразность изготовления зарядников своими руками. По сути, они являются многоцелевыми блоками питания с разными режимами работы.

Зарядное устройство – блок питания

Производители

Модели выбираются в основном с питанием от сети 220 В. Для выбора надо знать их особенности. Общие характеристики современных зарядных устройств для автомобильных аккумуляторов следующие:

  • импульсный тип;
  • наличие принудительной вентиляции;
  • небольшие габариты и вес;
  • автоматический режим заряда.

“Беркут” Smart Power SP-25N

Модель является профессиональной и предназначена для зарядки кислотно-свинцовых АКБ на 12 В. Автоматический принцип действия включает следующие режимы работы:

  • зарядка любых автомобильных аккумуляторов при обычных условиях;
  • зарядка в режиме “Зима” – при температуре среды от 5 0 С и ниже;
  • “десульфатация” – восстановление с увеличением напряжения до максимального;
  • “источник питания” – применяется для подачи напряжения при нагрузке до 300 Вт (не аккумулятора).

Зарядное устройство “Беркут” Smart Power SP-25N

Зарядка производится в 9 этапов. Своими руками подобное устройство изготовить сложно. Сначала АКБ проверяется на способность заряжаться. После производится восстановление небольшим током с постепенным увеличением до максимального. На последнем этапе создается режим сбережения.

Модель может иметь разные классы защиты, например, IP20 (обычные условия) и IP44 (от брызг и частиц размером 1 мм и более).

Аккумулятор можно заряжать, не снимая с авто: через прикуриватель или контакты-“крокодилы”.

При зарядке клемма “+” аккумулятора должна отключаться от автомобильной цепи.

“Орион” (“Вымпел”)

Приспособление для импульсного преобразования энергии делает автоматическую зарядку. Схема обеспечивает плавное ручное управление силой тока с помощью поворотной ручки. Индикаторы контроля могут быть стрелочными и линейными. Степень разрядки батареи может быть 0-12 В.

Зарядное устройство “Орион”

“Орион” является источником питания для другой нагрузки, например, инструментов, работающих от напряжения 12-15 В.

Главным достоинством прибора является цена, которая в разы меньше, чем у аналогов. При увеличении мощности и количества дополнительных функций стоимость может значительно возрасти.

Обзор устройства. Видео

Про автоматическое зарядное устройство для акб много полезной информации можно узнать из видео ниже.

На рынке имеется большой выбор импульсных зарядных устройств к свинцово-кислотным АКБ для авто. Особенностью является простой интерфейс и много выполняемых функций. Схемы простых зарядников можно легко найти и собрать своими руками, но лучше под рукой иметь надежное устройство, гарантирующее длительную работу автомобильного аккумулятора.

Известно, что в процессе эксплуатации автомобильных аккумуляторных батарей необходимо время от времени делать профилактические зарядно-разрядные циклы, чтобы предотвращать сульфатацию пластин и тем самым увеличивать срок их службы. Существует и немало устройств, в том числе самодельных (см. журнал «Моделист-конструктор» № 9- 11 ’01), посредством которых аккумулятор вначале разряжается до 10,5 В током 1/20 от его емкости, а затем напряжение на его клеммах доводится в ходе зарядно-разрядного цикла до 14,2-14,5 В. И соотношение зарядно-разрядной составляющих тока здесь в большинстве своем поддерживается чуть ли не идеальное - как 10:1, а длительностей импульсов заряд-разряд - как 3:1, но…

Меня (да, наверное, и многих других автолюбителей, не говоря уже о профессионалах) не могут удовлетворять массивность трансформаторов и крупногабаритность радиаторов, присущих конструкциям данных устройств. Похоже, что миниатюризация и иные черты прогресса, бурно проявляющиеся, скажем, в телевизионной и компьютерной технике, почти не угадываются в той аппаратуре, которую отечественный рынок выдает за «современную разрядно-зарядную, десульфатизирующую».

Отчаявшись найти готовую разработку с нужными мне параметрами, создал свою. Ее основные характеристики: ток заряда регулируется переменным резистором, выведенным на лицевую панель, в интервале от 2,5 до 7 А. Значит, требуемая зарядно-разрядная составляющая 1:10 может легко устанавливаться для большинства из эксплуатируемых аккумуляторов. Ток разряда фиксированный, равный 2.5 А (определяется электрическими параметрами лампы EL2). Ну а ток разряда в режиме десульфатации составляет 0,65 А (зависит от лампы EL1).

Время заряда равно 17 с, а разряда - 5 с. То есть соотношение длительности импульсов заряд-разряд приблизительно соответствует рекомендуемому 3:1. Однако этот параметр можно изменять подбором резисторов R35 и, соответственно, R36. Потребляемая мощность зависит от устанавливаемого тока заряда и равна примерно 30-90 Вт. Юстировка пороговых компараторов осуществляется подстроечными резисторами: R34 - нижний предел (10,5 В) и R31 - верхний предел (14,5 В). Устройство питается от аккумулятора и от бытовой энергосети напряжением 180-250 В.

Когда переключатель SB2 находится в положении ЗАРЯД (см. принципиальную электрическую схему), контроль за аккумулятором отсутствует, разряд невозможен. В этом режиме при включенной сетевой кнопке SB1 блок работает как обычное зарядное устройство с регулировкой зарядного тока. С установкой переключателя SB2 в режим ДЕСУЛЬФАТАЦИЯ осуществляются поочередная зарядка и разрядка аккумулятора.

При нажатии на кнопку ПУСК (SB3) происходит первоначальная разрядка током 2,5 А до напряжения 10,5 В, а затем - зарядка десульфатирующим способом до напряжения 14,2-14,5 В, после чего устройство, находясь в режиме ОДНОКРАТНО, автоматически отключается. Если же кнопочный переключатель SB4 находится в положении МНОГОКРАТНО, процесс разрядки-зарядки повторяется сколь угодно, что является необходимейшим условием для «лечения» аккумулятора.

«Стандартное» электропитание (220 В, 50 Гц) устройства осуществляется через плавкий предохранитель FU1 и фильтр L1C1C2, предотвращающий от проникновения радиопомех в сеть. Поступающее переменное напряжение выпрямляется диодным мостом VD1-VD4 и сглаживается конденсаторами С4, С5. Присутствие резистора R2 диктуется необходимостью ограничивать ток во время зарядки конденсаторов. Оптроном VU1 контролируется наличие напряжения в сети или, когда оно отсутствует, обеспечивается блокировка (по выв.9 логического элемента DD2.3) режима разряда аккумулятора.

Далее. Если подсоединить аккумулятор, то на выв.3 двухпорогового компаратора DA2 установится напряжение высокого уровня (логическая «единица»). Значит, откроется полупроводниковый триод VT6 и засияет светодиод HL1 ИНДИК. ЗАРЯДА. А низкий уровень (логический «нуль»), появившийся на коллекторе этого транзистора, поступит на выводы 9 DD1.3 и 13 DD1.4 и обеспечит тем самым разблокировку низкочастотного генератора. Скважность импульсов предопределят величины сопротивлений резисторов R36 (заряд) и R35 (разряд), а частоту - номинал емкости С18.

На выв.10 логического элемента DD1.3 во время заряда аккумулятора устанавливается лог.1, блокируя транзистором VT3 высокий порог (14,2 В) компаратора DA2. Использование данного алгоритма обуславливается тем, что сравнение с поименованным выше порогом должно происходить только в режиме разряда, чтобы не допускать срабатывания компаратора с недозаряженным аккумулятором. Тот же высокий уровень через оптрон VU2 и транзистор VT1 запускает преобразователь напряжения.

В момент разряда появляется на выв. 10 DD1.3 напряжение низкого логического уровня. Это создает благоприятные условия для блокировки преобразователя, а также для установления лог.1 на выв.11 DD1.4. В результате срабатывает электронный ключ, собранный на транзисторах VT4, VT5, и происходит разряд аккумулятора через лампу накаливания EL1. Завышенные электрические параметры последней (24 В, 21 Вт) предотвращают ее преждевременное перегорание.

Нажатие на кнопку SB3 ПУСК приводит к установлению напряжения низкого логического уровня на выходе компаратора (выв.3 DA2). Транзистор VT6 при этом закрывается; блокируется генератор, собранный на ИМС DD1, а также электронный преобразователь напряжения; устанавливается лог.1 на выв.3 RS-триггера, включающего в себя ячейки DD2.1, DD2.2 микросхемы К561ЛА7. И если сетевое напряжение присутствует, то на входах логического элемента DD2.3 - лог. 1 и, соответственно, на выходе DD2.4- напряжение высокого уровня. Последнее вызывает срабатывание транзисторного ключа (VT7, VT8). В результате начинают светиться полупроводниковый HL2 ИНДИК. РАЗРЯДА и лампа накаливания EL2 (12 В, 30 Вт); аккумулятор разряжается до напряжения 10,5 В. Затем срабатывает «низкий» компаратор (DA2 с резисторами R33, R34), на выходе которого устанавливается вновь лог.1, повторяя тем самым цикл заряда.

При достижении напряжения 14,2 В срабатывает «высокий» компаратор (DA2 с резисторами R31, R32). И если кнопочный переключатель SB4 находится в положении ОДНОКРАТНО, то светодиод HL2 гаснет, а устройство устанавливается и работает в ждущем режиме. Но когда SB4 - в положении МНОГОКРАТНО, тогда аккумулятор вновь включится на заряд и контрольно-тренировочный цикл будет повторяться сколь угодное число раз.

Емкости С19, С20 необходимы для защиты от помех, а также для некоторой задержки срабатывания компараторов при переходных процессах. Электронный стабилизатор DA3 необходим для защиты микросхем при кратковременном пропадании контакта на клеммах аккумулятора, так как напряжение на выходе преобразователя в режиме холостого хода увеличивается до 25 В.

Топология монтажных плат I и II (масштабное изображение со стороны радиодеталей и со стороны печатных проводников)

Для улучшения эксплуатационных характеристик устройства (в том числе снижения его массы до 900 г и доведения размеров корпуса до минимальных 80x80x150 мм) рекомендуется ввод дополнительного субблока в конструкцию, с установкой малогабаритного вентилятора. Это своего рода мини-система принудительного охлаждения для данной аппаратуры, обеспечивающая должную надежность мощным полупроводниковым приборам даже при использовании малогабаритных радиаторов: дюралюминиевой пластины 80x65x5 мм - для VD9 и VD10, а ребристого теплоотвода, укороченного до 30x22x15 мм - для VT2. Остальная «электроника» устройства, включая транзисторы VT5 и VT8, безотказно работает в допустимых режимах и без каких бы то ни было радиаторов.

Теперь о других особенностях конструкции. В преобразователе применены самодельные дроссели и трансформатор. Обмотка L1 - это 15-20 витков на феррите Н2000НМ К20х16х6 в два провода НГТФ-0,25. В качестве магнитопровода для Т1 использован феррит Ш11,5×14,5 от дросселей строчной развертки, уже отработавших свое в телевизорах УПИМЦТ. Обмотки, разумеется, нужны новые. I и II выполнены в два, а III - в семь проводов. То есть первичная обмотка у Т1 должна содержать в себе 91 виток (ПЭВ2-0,5х2), вторичная - четыре витка того же провода. А в качестве последней, третьей обмотки нужно лишь девять витков (ПЭВ2-0,6х7).

Качеству намотки следует уделить особое внимание. Витки должны быть уложены аккуратно, без перехлестов; между рядами необходимо проложить бумагу. Если последний ряд какой-либо обмотки грозит оказаться заполненным не до конца, то надо распределить оставшиеся витки равномерно.

Чтобы впоследствии не возникало путаницы, нелишне сразу же пометить начало и конец каждой из обмоток. Но можно воспользоваться следующей, хорошо зарекомендовавшей себя на практике методикой. Особенно, когда время для пометок, казалось бы, упущено и трансформатор уже готов к установке в ту или иную конструкцию.

На первичную обмотку следует подать контрольное напряжение с низкочастотного генератора (10-15 В, 5-15 кГц). Произвольно приняв за «начала» и «концы» остальные выводы, цифровым вольтметром в режиме работы в цепях переменного тока находят истинные обмотки и фиксируют значение и для каждой из них.

Затем к концу первичной обмотки временно подключают вторичную. Замеряют напряжение относительно заведомо известного начала «первички» и неприсоединенного «конца» исследуемой пары выводов.

Если прибор фиксирует в данном эсперименте возросшее значение и, то временно подключенный вывод и есть истинное начало, а подсоединяемый (бывший ранее свободным) - конец обмотки. И наоборот, заниженное напряжение свидетельствует о том, что принятые произвольно наименования исследуемой пары выводов необходимо поменять на их антиподы. Аналогичным же образом определяют начало и конец третьей обмотки.

Во время сборки трансформатора надо предусмотреть фиксированный зазор 1,3 мм, проложив между магнитопроводом и «симбиозом» бескаркасных обмоток кусочки картона. В качестве измерителя тока рекомендуется использовать стрелочный М4761 (им оснащались когда-то катушечные магнитофоны) с самодельным шунтом R26 - отрезком нихромового провода (диаметр 2 мм, а длина - исходя из требуемого сопротивления 0,1 Ом). Перед монтажом такой прибор необходимо аккуратно вскрыть и сместить стрелку в середину шкалы, чтобы потом, в ходе работы устройства была возможность наблюдать как заряд, так и разряд аккумулятора.

1,2 - клеммы; 3 - стрелочный индикатор разряда-заряда; 4 - кнопка включения устройства в бытовую сеть; 5 - кнопка ПУСК; 6 - переключатель ОДНОКРАТНО-МНОГОКРАТНО; 7 - переключатель ЗАРЯД-ДЕСУЛЬФАТАЦИЯ; 8 - ручка регулятора ТОК ЗАРЯДА; 9 - светодиод ИНДИК. РАЗРЯДА; 10 - светодиод ИНДИК. ЗАРЯДА; 11 - вентилятор системы принудительного охлаждения; 12 - монтажная плата II; 13 - пластина охлаждения и радиатор; 14 - отсек ламп накаливания; 15 - монтажная плата I

Примененные в конструкции диоды в большинстве своем - типа КД226 с любым буквенным индексом в конце наименования. В качестве VD8 рекомендовано использование КД206Д или аналога, рассчитанного на напряжение 600-800 В, прямой средний ток силой 1,7 А и частоту не менее 30 кГц. Диоды VD9, VD10 в авторском варианте - КД213А (КД213Б). Но, как показала практика, их для большей надежности желательно заменить диодами Шоттки КД2997А (КД2997Б) или КД2999А (КД2999Б).

Оптроны VU1, VU2 типа АОТ127. Важно, чтобы напряжение изоляции было не ниже 500 В. Вместо транзисторов КТ315, указанных на принципиальной электрической схеме, приемлемы любые из серий КТ312, КТ316, КТ3102, рассчитанные на работу в устройствах с напряжением 30 В. Транзистор VT5 - КТ801А (КТ801Б), другие типы полупроводниковых триодов здесь нежелательны. А вот на месте VT8 приемлем КТ819 с любым буквенным индексом в конце наименования.

Вентилятор применен от IВМ компьютера: GI-486-12v. Подстроечные резисторы R31, R34 - многооборотные СП5-2, а регулировочный (R14 - типа СПЗ-4ам. В качестве постоянных резисторов приемлемы МЛТ и их многочисленные аналоги, соответствующие мощности рассеивания и номиналы условно обозначены на принципиальной электрической схеме. В роли конденсаторов С1, С13 и С14 как нельзя лучше подойдут К78-2, на месте С2, СЗ успешно сработают К15-5, рассчитанные на напряжение не ниже 600 В, С4 и С5 - по 100 мкФ с Uном = 400 В или один 220-микрофарадный 400-вольтный К50-32. Остальные электролитические конденсаторы - широко распространенные К50-35, а неполярные - любого типа.

Устройство собрано на двух печатных платах 111x75x2 мм из двусторонне фольгированного текстолита или гетинакса. Жесткая их фиксация в корпусе достигнута посредством алюминиевого уголка - к передней панели, а с помощью пластины охлаждения и радиаторов - к стенкам прочного металлического корпуса, имеющего в верхней части вентиляционные отверстия, а сзади - отсек под лампы накаливания. Все располагается так, чтобы захваченный сверху воздушный поток обдувал радиатор транзистора VT2, резисторы R20-R22, проходил через отверстия пластины-радиатора диодов VD9, VD10, охлаждая сами вентили, а затем - и лампы накаливания EL1, EL2, после чего беспрепятственно покидал бы блок в задней его части.

Если монтаж выполнен в строгом соответствии с принципиальной электрической схемой и из заведомо исправных радио-деталей, то устройство, как правило, начинает работать сразу. Однако пренебрегать юстировкой пороговых компараторов в большинстве случаев, думается, не стоит. Да и алгоритм выполнения такой операции довольно прост.

Вначале вывертывают из патронов лампы накаливания EL1 и EL2 (чтобы снизить нагрузку) и подсоединяют к регулируемому блоку питания клеммы устройства, выведенные на лицевую панель. Выставив на блоке питания 10,5 В, подстроечным резистором R34 добиваются появления свечения HL1 - ИНДИК. ЗАРЯДА. Затем устанавливают напряжение 14,2 В, и регулировкой «подстроечника» R31 достигают того момента, когда HL1 выключится. После этого ввинчивают в патроны лампы накаливания (EL1, EL2) и… Импульсное автоматическое разряднозарядное устройство можно с полным основанием считать настроенным и готовым к надежной работе!

С. АБРАМОВ, г. Оренбург

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter , чтобы сообщить нам.

При нормальных условиях эксплуатации, электрическая система автомобиля самодостаточна. Речь идет об энергоснабжении – связка из генератора, регулятора напряжения, и аккумуляторной батареи, работает синхронно и обеспечивает бесперебойное питание всех систем.

Это в теории. На практике, владельцы автомобилей вносят поправки в эту стройную систему. Или же оборудование отказывается работать в соответствии с установленными параметрами.

Например:

  1. Эксплуатация аккумуляторной батареи, которая исчерпала свой ресурс. Элемент питания «не держит» заряд
  2. Нерегулярные поездки. Длительный простой автомобиля (особенно в период «зимней спячки») приводит к саморазряду АКБ
  3. Автомобиль используется в режиме коротких поездок, с частым глушением и запуском мотора. АКБ просто не успевает подзарядиться
  4. Подключение дополнительного оборудования увеличивает нагрузку на АКБ. Зачастую приводит к повышенному току саморазряда при выключенном двигателе
  5. Экстремально низкая температура ускоряет саморазряд
  6. Неисправная топливная система приводит к повышенной нагрузке: автомобиль заводится не сразу, приходится долго крутить стартер
  7. Неисправный генератор или регулятор напряжения не позволяет нормально заряжать аккумулятор. К этой проблеме относятся изношенные силовые провода и плохой контакт в цепи заряда
  8. И наконец, вы забыли выключить головной свет, габариты или музыку в автомобиле. Для полного разряда аккумулятора за одну ночь в гараже, иногда достаточно неплотно закрыть дверь. Освещение салона потребляет достаточно много энергии.

Любая из перечисленных причин приводит к неприятной ситуации: вам надо ехать, а батарея не в силах провернуть стартер. Проблема решается внешней подпиткой : то есть, зарядным устройством.

Во вкладке четыре проверенных и надежных схем зарядных устройств для автомобиля от простой до самой сложной. Выбирай любую и она будет работать.

Простая схема зарядного устройства на 12В.

Зарядное устройство с регулировкой тока зарядки.

Регулировка от 0 до 10А осуществляется изменением задержки открывания тринистора.

Схема зарядного устройства для аккумулятора с самоотключением после зарядки.

Для заряда аккумуляторов емкостью 45 ампер.

Схема умного зарядного устройства, которое предупредит о не правильном подключении.

Его совершенно несложно собрать своими руками. Пример зарядного устройства сделанного из бесперебойника.

Как известно, Ni-Cd и в меньшей степени Ni-Mh аккумуляторы обладают эффектом памяти, т. е. частичной теряют емкость при зарядке, если перед этим они не были полностью разряжены. Обычно при этом напряжение на одном элементе составляет около 1 В. По этому, перед зарядкой аккумулятор следует разрядить до конца . Однако простая разрядка через резистор может привести к сильному разряду аккумулятора, если разрядку не прекратить вовремя. Чрезмерный разряд также вреден для аккумулятора. Для замедления разряда аккумулятора можно включить в цепь полупроводниковый диод Д223А. Последовательно с диодом в цепь включен резистор, сопротивлением 12 Ом.

Схема простейшего разрядного

Как известно диод - прибор нелинейный и при малых напряжениях (менее 1 В) p-n - переход даже в прямом направлении оказывает заметное сопротивление электрическому току. Для работы в данном устройстве подойдут кремниевые маломощные выпрямительные или универсальные диоды. Согласно справочнику кремниевый диод Д-233А открывается в прямом направлении при напряжении, около 0,6 В. Следовательно при включении в цепь диода, разряд аккумулятора будет ограничен.

Конструктивно устройство представляет собой колодку для одного гальванического элемента типоразмера АА. Резистор R1 и диод VD1 закреплены навесным монтажом.

Недостатком данного устройства является то, что разряд аккумулятора прекратится полностью при достижении напряжения 0,6 В. Т. е. аккумулятор разрядится сильнее, чем нужно.

Второй вариант схемы

Автор пробовал соединить последовательно германиевый и кремниевый диоды для того, чтобы остановить разряд при напряжении около 0,9-1 В. В дополнении к кремниевому Д-233А был использован германиевый диод Д-18ВП, который открывается в прямом направлении при напряжении около 0,4 В .

Но опыт показал, что в таком случае даже полностью заряженный аккумулятор создает в цепи ток около 4 мА. Очевидно, что с таким током разряд аккумулятора займет неприемлемый промежуток времени.

С падением напряжения на аккумуляторе в процессе разряда, ток тоже будет слабеть, а, следовательно, уменьшится скорость разряда аккумулятора. Поэтому хотя первый вариант схемы допускает разряд аккумулятора больше желаемого, на деле для этого его надо забыть в разрядном устройстве на несколько часов.

Литература

  1. http://сайт/publ/pitanie/razrjadnoe_ustrojstvo_dlja_akkumuljatorov/5-1-0-332
  2. Полупроводниковые приборы: Диоды, транзисторы, оптоэлектронные приборы. Справочник / А. В. Баюков, А. Б. Гитцевич, А. А. Зайцев и др.; Под общ. Ред Н. Н. Горюнова. - 2-е изд., перераб. - М.: Энергоатомиздат, 1985. - 744 с.

Новое на сайте

>

Самое популярное